cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001678 Number of series-reduced planted trees with n nodes.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 67, 127, 248, 482, 952, 1885, 3765, 7546, 15221, 30802, 62620, 127702, 261335, 536278, 1103600, 2276499, 4706985, 9752585, 20247033, 42110393, 87733197, 183074638, 382599946, 800701320, 1677922740, 3520581954
Offset: 0

Views

Author

Keywords

Comments

The initial term is 0 by convention, though a good case can be made that it should be 1 instead.
Series-reduced trees contain no node with valency 2; see A000014 for the unrooted series-reduced trees. - Joerg Arndt, Mar 03 2015
For n>=2, a(n+1) is the number of unordered rooted trees (see A000081) with n nodes where nodes cannot have out-degree 1, see example. Imposing the condition only at non-root nodes gives A198518. - Joerg Arndt, Jun 28 2014
For n>=3, a(n+1) is the number of unordered rooted trees with n nodes where all limbs are of length >= 2. Limbs are the paths from the leafs (towards the root) to the nearest branching point (with the root considered to be a branching point). - Joerg Arndt, Mar 03 2015
A rooted tree is lone-child-avoiding if no vertex has exactly one child, and topologically series-reduced if no vertex has degree 2. This sequence counts unlabeled lone-child-avoiding rooted trees with n - 1 vertices. Topologically series-reduced rooted trees are counted by A001679, which is essentially the same as A059123. - Gus Wiseman, Jan 20 2020

Examples

			--------------- Examples (i=internal,e=external): ---------------------------
|.n=2.|..n=4..|..n=5..|...n=6.............|....n=7..........................|
|.....|.......|.......|.............e...e.|................e.e.e......e...e.|
|.....|.e...e.|.e.e.e.|.e.e.e.e...e...i...|.e.e.e.e.e...e....i....e.e...i...|
|..e..|...i...|...i...|....i........i.....|.....i..........i..........i.....|
|..e..|...e...|...e...|....e........e.....|.....e..........e..........e.....|
-----------------------------------------------------------------------------
G.f. = x^2 + x^4 + x^5 + 2*x^6 + 3*x^7 + 6*x^8 + 10*x^9 + 19*x^10 + ...
From _Joerg Arndt_, Jun 28 2014: (Start)
The a(8) = 6 rooted trees with 7 nodes as described in the comment are:
:           level sequence       out-degrees (dots for zeros)
:     1:  [ 0 1 2 3 3 2 1 ]    [ 2 2 2 . . . . ]
:  O--o--o--o
:        .--o
:     .--o
:  .--o
:
:     2:  [ 0 1 2 2 2 2 1 ]    [ 2 4 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:     .--o
:  .--o
:
:     3:  [ 0 1 2 2 2 1 1 ]    [ 3 3 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:  .--o
:  .--o
:
:     4:  [ 0 1 2 2 1 2 2 ]    [ 2 2 . . 2 . . ]
:  O--o--o
:     .--o
:  .--o--o
:     .--o
:
:     5:  [ 0 1 2 2 1 1 1 ]    [ 4 2 . . . . . ]
:  O--o--o
:     .--o
:  .--o
:  .--o
:  .--o
:
:     6:  [ 0 1 1 1 1 1 1 ]    [ 6 . . . . . . ]
:  O--o
:  .--o
:  .--o
:  .--o
:  .--o
:  .--o
:
(End)
From _Gus Wiseman_, Jan 20 2020: (Start)
The a(2) = 1 through a(9) = 10 unlabeled lone-child-avoiding rooted trees with n - 1 nodes (empty n = 3 column shown as dot) are:
  o   .   (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)    (ooooooo)
                       (o(oo))  (o(ooo))  (o(oooo))   (o(ooooo))
                                (oo(oo))  (oo(ooo))   (oo(oooo))
                                          (ooo(oo))   (ooo(ooo))
                                          ((oo)(oo))  (oooo(oo))
                                          (o(o(oo)))  ((oo)(ooo))
                                                      (o(o(ooo)))
                                                      (o(oo)(oo))
                                                      (o(oo(oo)))
                                                      (oo(o(oo)))
(End)
		

References

  • D. G. Cantor, personal communication.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 525.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Unlabeled rooted trees are counted by A000081.
Topologically series-reduced rooted trees are counted by A001679.
Labeled lone-child-avoiding rooted trees are counted by A060356.
Labeled lone-child-avoiding unrooted trees are counted by A108919.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Singleton-reduced rooted trees are counted by A330951.

Programs

  • Maple
    with (powseries): with (combstruct): n := 30: sys := {B = Prod(C,Z), S = Set(B,1 <= card), C = Union(Z,S)}: A001678 := 1,0,1,seq(count([S, sys, unlabeled],size=i),i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
    # second Maple program:
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
           d*a(d+1), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n<2, 0,
          `if`(n=2, 1, b(n-2)-a(n-1)))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 02 2014
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*a[d+1], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; a[n_] := a[n] = If[n < 2, 0, If[n == 2, 1, b[n-2] - a[n-1]]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Sep 24 2014, after Alois P. Heinz *)
    terms = 38; A[] = 0; Do[A[x] = (x^2/(1+x))*Exp[Sum[A[x^k]/(k*x^k), {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 12 2018 *)
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[If[n<=1,0,Length[Select[urt[n-1],FreeQ[#,{}]&]]],{n,0,10}] (* _Gus Wiseman, Jan 20 2020 *)
  • PARI
    (a(n) = if( n<4, n==2, T(n-2, n-3))); /* where */ {T(n, k) = if( n<1 || k<1, (n==0) && (k>=0), sum(j=1, k, sum(i=1, n\j, T(n-i*j, min(n-i*j, j-1)) * binomial( a(j+1) + i-1, i))))}; /* Michael Somos, Jun 04 2002 */
    
  • PARI
    {a(n) = local(A); if( n<3, n==2, A = x / (1 - x^2) + O(x^n); for(k=3, n-2, A /= (1 - x^k + O(x^n))^polcoeff(A, k)); polcoeff(A, n-1))}; /* Michael Somos, Oct 06 2003 */

Formula

G.f.: A(x) satisfies A(x) = (x^2/(1+x))*exp( Sum_{k>=1} A(x^k)/(k*x^k) ) [Harary and E. M. Palmer, 1973, p. 62, Eq. (3.3.8)].
G.f.: A(x) = Sum_{n>=2} a(n) * x^n = x^2 / ((1 + x) * Product_{k>0} (1 - x^k)^a(k+1)). - Michael Somos, Oct 06 2003
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.189461985660850563... and c = 0.1924225474701550354144525345664845514828912790855223729854471406053655209... - Vaclav Kotesovec, Jun 26 2014
a(n) = Sum_{i=2..n-2} A106179(i, n-1-i) for n >= 3. - Andrew Howroyd, Mar 29 2021

Extensions

Additional comments from Michael Somos, Jun 05 2002

A001679 Number of series-reduced rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 0, 2, 2, 4, 6, 12, 20, 39, 71, 137, 261, 511, 995, 1974, 3915, 7841, 15749, 31835, 64540, 131453, 268498, 550324, 1130899, 2330381, 4813031, 9963288, 20665781, 42947715, 89410092, 186447559, 389397778, 814447067, 1705775653, 3577169927
Offset: 0

Views

Author

Keywords

Comments

Also known as homeomorphically irreducible rooted trees, or rooted trees without nodes of degree 2.
A rooted tree is lone-child-avoiding if no vertex has exactly one child, and topologically series-reduced if no vertex has degree 2. This sequence counts unlabeled topologically series-reduced rooted trees with n vertices. Lone-child-avoiding rooted trees with n - 1 vertices are counted by A001678. - Gus Wiseman, Jan 21 2020

Examples

			G.f. = 1 + x + x^2 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 12*x^8 + 20*x^9 + ...
From _Gus Wiseman_, Jan 21 2020: (Start)
The a(1) = 1 through a(8) = 12 unlabeled topologically series-reduced rooted trees with n nodes (empty n = 3 column shown as dot) are:
  o  (o)  .  (ooo)   (oooo)   (ooooo)    (oooooo)    (ooooooo)
             ((oo))  ((ooo))  ((oooo))   ((ooooo))   ((oooooo))
                              (oo(oo))   (oo(ooo))   (oo(oooo))
                              ((o(oo)))  (ooo(oo))   (ooo(ooo))
                                         ((o(ooo)))  (oooo(oo))
                                         ((oo(oo)))  ((o(oooo)))
                                                     ((oo(ooo)))
                                                     ((ooo(oo)))
                                                     (o(oo)(oo))
                                                     (oo(o(oo)))
                                                     (((oo)(oo)))
                                                     ((o(o(oo))))
(End)
		

References

  • D. G. Cantor, personal communication.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62, Eq. (3.3.9).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial term, same as A059123.
Cf. A000055 (trees by nodes), A000014 (homeomorphically irreducible trees by nodes), A000669 (homeomorphically irreducible planted trees by leaves), A000081 (rooted trees by nodes).
Cf. A246403.
The labeled version is A060313, with unrooted case A005512.
Matula-Goebel numbers of these trees are given by A331489.
Lone-child-avoiding rooted trees are counted by A001678(n + 1).

Programs

  • Maple
    with(powseries): with(combstruct): n := 30: Order := n+3: sys := {B = Prod(C,Z), S = Set(B,1 <= card), C = Union(Z,S)}:
    G001678 := (convert(gfseries(sys,unlabeled,x)[S(x)], polynom)) * x^2: G0temp := G001678 + x^2:
    G001679 := G0temp / x + G0temp - (G0temp^2+eval(G0temp,x=x^2))/(2*x): A001679 := 0,seq(coeff(G001679,x^i),i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
    # adapted for Maple 16 or higher version by Vaclav Kotesovec, Jun 26 2014
  • Mathematica
    terms = 37; (* F = G001678 *) F[] = 0; Do[F[x] = (x^2/(1 + x))*Exp[Sum[ F[x^k]/(k*x^k), {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms + 1}];
    G[x_] = 1 + ((1 + x)/x)*F[x] - (F[x]^2 + F[x^2])/(2*x) + O[x]^terms;
    CoefficientList[G[x], x] (* Jean-François Alcover, Jan 12 2018 *)
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],Length[#]!=2&&FreeQ[Z@@#,{}]&]],{n,15}] (* _Gus Wiseman, Jan 21 2020 *)
  • PARI
    {a(n) = local(A); if( n<3, n>0, A = x / (1 - x^2) + x * O(x^n); for(k=3, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff( (1 + x)*A - x*(A^2 + subst(A, x, x^2)) / 2, n))};

Formula

G.f. = 1 + ((1+x)*f(x) - (f(x)^2+f(x^2))/2)/x where f(x) is g.f. for A001678 (homeomorphically irreducible planted trees by nodes).
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711... and c = 0.4213018528699249210965028... . - Vaclav Kotesovec, Jun 26 2014
For n > 1, this sequence counts lone-child-avoiding rooted trees with n nodes and more than two branches, plus lone-child-avoiding rooted trees with n - 1 nodes. So for n > 1, a(n) = A331488(n) + A001678(n). - Gus Wiseman, Jan 21 2020

Extensions

Additional comments from Michael Somos, Oct 10 2003

A198518 G.f. satisfies: A(x) = exp( Sum_{n>=1} A(x^n)/(1+x^n) * x^n/n ).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 29, 54, 102, 194, 375, 730, 1434, 2837, 5650, 11311, 22767, 46023, 93422, 190322, 389037, 797613, 1639878, 3380099, 6983484, 14459570, 29999618, 62357426, 129843590, 270807835, 565674584, 1183301266, 2478624060, 5198504694, 10916110768, 22948299899
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2011

Keywords

Comments

For n>=1, a(n) is the number of rooted trees (see A000081) with n non-root nodes where non-root nodes cannot have out-degree 1, see the note by David Callan and the example. Imposing the condition also for the root node gives A001678. - Joerg Arndt, Jun 28 2014
Compare definition to G(x) = exp( Sum_{n>=1} G(x^n)*x^n/n ), where G(x) is the g.f. of A000081, the number of rooted trees with n nodes.
Number of forests of lone-child-avoiding rooted trees with n unlabeled vertices. - Gus Wiseman, Feb 03 2020

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 9*x^6 + 16*x^7 + 29*x^8 +...
where
log(A(x)) = A(x)/(1+x)*x + A(x^2)/(1+x^2)*x^2/2 + A(x^3)/(1+x^3)*x^3/3 +...
The coefficients in A(x)/(1+x) begin:
[1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 67, 127, 248, 482, 952, 1885, 3765, ...]
(this is, up to offset, A001678),
from which g.f. A(x) may be generated by the Euler transform:
A(x) = 1/((1-x)^1*(1-x^2)^0*(1-x^3)^1*(1-x^4)^1*(1-x^5)^2*(1-x^6)^3*(1-x^7)^6*(1-x^8)^10*(1-x^9)^19*(1-x^10)^35*...).
From _Joerg Arndt_, Jun 28 2014: (Start)
The a(6) = 9 rooted trees with 6 non-root nodes as described in the comment are:
:           level sequence       out-degrees (dots for zeros)
:     1:  [ 0 1 2 3 3 3 2 ]    [ 1 2 3 . . . . ]
:  O--o--o--o
:        .--o
:        .--o
:     .--o
:
:     2:  [ 0 1 2 3 3 2 2 ]    [ 1 3 2 . . . . ]
:  O--o--o--o
:        .--o
:     .--o
:     .--o
:
:     3:  [ 0 1 2 3 3 2 1 ]    [ 2 2 2 . . . . ]
:  O--o--o--o
:        .--o
:     .--o
:  .--o
:
:     4:  [ 0 1 2 2 2 2 2 ]    [ 1 5 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:     .--o
:     .--o
:
:     5:  [ 0 1 2 2 2 2 1 ]    [ 2 4 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:     .--o
:  .--o
:
:     6:  [ 0 1 2 2 2 1 1 ]    [ 3 3 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:  .--o
:  .--o
:
:     7:  [ 0 1 2 2 1 2 2 ]    [ 2 2 . . 2 . . ]
:  O--o--o
:     .--o
:  .--o--o
:     .--o
:
:     8:  [ 0 1 2 2 1 1 1 ]    [ 4 2 . . . . . ]
:  O--o--o
:     .--o
:  .--o
:  .--o
:  .--o
:
:     9:  [ 0 1 1 1 1 1 1 ]    [ 6 . . . . . . ]
:  O--o
:  .--o
:  .--o
:  .--o
:  .--o
:  .--o
(End)
From _Gus Wiseman_, Jan 22 2020: (Start)
The a(0) = 1 through a(6) = 9 rooted trees with n + 1 nodes where non-root vertices cannot have out-degree 1:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)    (oooooo)
                ((oo))  ((ooo))  ((oooo))   ((ooooo))
                        (o(oo))  (o(ooo))   (o(oooo))
                                 (oo(oo))   (oo(ooo))
                                 ((o(oo)))  (ooo(oo))
                                            ((o(ooo)))
                                            ((oo)(oo))
                                            ((oo(oo)))
                                            (o(o(oo)))
(End)
		

Crossrefs

The labeled version is A254382.
Unlabeled rooted trees are A000081.
Lone-child-avoiding rooted trees are A001678(n+1).
Topologically series-reduced rooted trees are A001679.
Labeled lone-child-avoiding rooted trees are A060356.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) b(n):= `if`(n=0, 1, a(n)-b(n-1)) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
           d*b(d-1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 02 2014
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, a[n] - b[n-1]];
    a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*b[d-1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],FreeQ[Z@@#,{}]&]],{n,10}] (* _Gus Wiseman, Jan 22 2020 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A/(1+x),x,x^m+x*O(x^n))*x^m/m)));polcoeff(A,n)}

Formula

Euler transform of coefficients in A(x)/(1+x), where g.f. A(x) = Sum_{n>=0} a(n)*x^n.
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711..., c = 1.3437262442171062526771597... . - Vaclav Kotesovec, Sep 03 2014
a(n) = A001678(n + 1) + A001678(n + 2). - Gus Wiseman, Jan 22 2020
Euler transform of A001678(n + 1). - Gus Wiseman, Feb 03 2020

A060313 Number of homeomorphically irreducible rooted trees (also known as series-reduced rooted trees, or rooted trees without nodes of degree 2) on n labeled nodes.

Original entry on oeis.org

1, 2, 0, 16, 25, 576, 2989, 51584, 512649, 8927200, 130956001, 2533847328, 48008533885, 1059817074512, 24196291364925, 609350187214336, 16135860325700881, 459434230368302016, 13788624945433889593, 439102289933675933600, 14705223056221892676741
Offset: 1

Views

Author

Vladeta Jovovic, Mar 27 2001

Keywords

Examples

			From _Gus Wiseman_, Jan 22 2020: (Start)
The a(1) = 1 through a(4) = 16 trees (in the format root[branches], empty column shown as dot) are:
  1  1[2]  .  1[2,3,4]
     2[1]     1[2[3,4]]
              1[3[2,4]]
              1[4[2,3]]
              2[1,3,4]
              2[1[3,4]]
              2[3[1,4]]
              2[4[1,3]]
              3[1,2,4]
              3[1[2,4]]
              3[2[1,4]]
              3[4[1,2]]
              4[1,2,3]
              4[1[2,3]]
              4[2[1,3]]
              4[3[1,2]]
(End)
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

The unlabeled unrooted version is A000014.
The unrooted version is A005512.
The unlabeled version is A001679 or A059123.
The lone-child-avoiding version is A060356.
Labeled rooted trees are A000169.

Programs

  • Magma
    [1] cat [n*Factorial(n-2)*(&+[(-1)^k*Binomial(n,k)*(n-k)^(n-k-2)/Factorial(n-k-2): k in [0..n-2]]): n in [2..20]]; // G. C. Greubel, Mar 07 2020
    
  • Maple
    seq( `if`(n=1, 1, n*(n-2)!*add((-1)^k*binomial(n, k)*(n-k)^(n-k-2)/(n-k-2)!, k=0..n-2)), n=1..20); # G. C. Greubel, Mar 07 2020
  • Mathematica
    f[n_] := If[n < 2, 1, n(n - 2)!Sum[(-1)^k*Binomial[n, k](n - k)^(n - 2 - k)/(n - 2 - k)!, {k, 0, n - 2}]]; Table[ f[n], {n, 19}] (* Robert G. Wilson v, Feb 12 2005 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
    Table[Length[Select[lrt[Range[n]],Length[#]!=2&&FreeQ[Z@@#,Integer[]]&]],{n,6}] (* Gus Wiseman, Jan 22 2020 *)
  • Sage
    [1]+[n*factorial(n-2)*sum((-1)^k*binomial(n,k)*(n-k)^(n-k-2)/factorial( n-k-2) for k in (0..n-2)) for n in (2..20)] # G. C. Greubel, Mar 07 2020

Formula

a(n) = n*(n-2)!*Sum_{k=0..n-2} (-1)^k*binomial(n, k)*(n-k)^(n-k-2)/(n-k-2)!, n>1.
E.g.f.: x*(exp( - LambertW(-x/(1+x))) - (LambertW(-x/(1+x))/2 )^2).
a(n) ~ n^(n-1) * (1-exp(-1))^(n+1/2). - Vaclav Kotesovec, Oct 05 2013
E.g.f.: -(1+x)*LambertW(-x/(1+x)) - (x/2)*LambertW(-x/(1+x))^2. - G. C. Greubel, Mar 07 2020

A331489 Matula-Goebel numbers of topologically series-reduced rooted trees.

Original entry on oeis.org

1, 2, 7, 8, 16, 19, 28, 32, 43, 53, 56, 64, 76, 98, 107, 112, 128, 131, 152, 163, 172, 196, 212, 224, 227, 256, 263, 266, 304, 311, 343, 344, 383, 392, 424, 428, 443, 448, 512, 521, 524, 532, 577, 602, 608, 613, 652, 686, 688, 719, 722, 742, 751, 784, 848, 856
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2020

Keywords

Comments

We say that a rooted tree is topologically series-reduced if no vertex (including the root) has degree 2.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of its branches. This gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of all topologically series-reduced rooted trees together with their Matula-Goebel numbers begins:
    1: o
    2: (o)
    7: ((oo))
    8: (ooo)
   16: (oooo)
   19: ((ooo))
   28: (oo(oo))
   32: (ooooo)
   43: ((o(oo)))
   53: ((oooo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   98: (o(oo)(oo))
  107: ((oo(oo)))
  112: (oooo(oo))
  128: (ooooooo)
  131: ((ooooo))
  152: (ooo(ooo))
  163: ((o(ooo)))
		

Crossrefs

Unlabeled rooted trees are counted by A000081.
Topologically series-reduced trees are counted by A000014.
Topologically series-reduced rooted trees are counted by A001679.
Labeled topologically series-reduced trees are counted by A005512.
Labeled topologically series-reduced rooted trees are counted by A060313.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    nn=1000;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    srQ[n_]:=Or[n==1,With[{m=primeMS[n]},And[Length[m]>1,And@@srQ/@m]]];
    Select[Range[nn],PrimeOmega[#]!=2&&And@@srQ/@primeMS[#]&]

A290840 a(n) = n! * [x^n] exp(n*x)/(1 + LambertW(-x)).

Original entry on oeis.org

1, 2, 12, 117, 1584, 27525, 585108, 14726411, 428551616, 14161828185, 523952280900, 21456869976135, 963553844335536, 47078974421716757, 2486272976536821332, 141118622400977894475, 8566597074999702384384, 553816179165426157329201, 37985975117322654130568964
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 12 2017

Keywords

Crossrefs

Main diagonal of A290824.

Programs

  • Mathematica
    Table[n! * SeriesCoefficient[Exp[n*x]/(1 + LambertW[-x]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 06 2017 *)

Formula

a(n) = A290824(n,n).
a(n) ~ exp(1/2 + n*exp(-1)) * n^n / sqrt(exp(1)-1). - Vaclav Kotesovec, Oct 06 2017
a(n) = Sum_{k=0..n} binomial(n,k)*n^(n-k)*k^k. - Fabian Pereyra, Jul 16 2024
E.g.f.: 1/((1+LambertW(-x))*(1+LambertW(LambertW(-x)))). - Fabian Pereyra, Jul 19 2024
Showing 1-6 of 6 results.