A331606 Number of compositions of n with the multiplicity of the first part odd.
1, 1, 4, 4, 12, 18, 44, 72, 158, 288, 604, 1146, 2332, 4528, 9126, 17944, 35940, 71130, 142132, 282344, 563630, 1121936, 2239060, 4462530, 8906236, 17764160, 35458774, 70761520, 141272876, 282025466, 563159588, 1124543256, 2245918406, 4485670168, 8960061076
Offset: 1
Keywords
Examples
For n=3, a(4)=4 as we count 4, 3+1, 1+3 and 2+1+1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
Programs
-
Maple
b:= proc(n, p, t) option remember; `if`(n=0, t, add(b(n-j, p, `if`(p=j, 1-t, t)), j=1..n)) end: a:= n-> add(b(n-j, j, 1), j=1..n): seq(a(n), n=1..38); # Alois P. Heinz, Jan 23 2020
-
Mathematica
gf[x_] := x/(2 (1 - 2 x)) + Sum[(1 - x) x^i/(2 (-2 x^(i + 1) + 2 x^i - 2 x + 1)) , {i, 1, 40}]; CL := CoefficientList[Series[gf[x], {x, 0, 35}], x]; Drop[CL, 1] (* Peter Luschny, Jan 23 2020 *)
Formula
G.f.: Sum_{i>=1} (1-x)*x^i/(2*(-2*x^(i+1)+2*x^i-2*x+1)) + x/(2*(1-2*x)).