A331607
E.g.f.: exp(1 / (1 - sin(x)) - 1).
Original entry on oeis.org
1, 1, 3, 12, 61, 372, 2639, 21280, 191833, 1908688, 20750331, 244478784, 3100597333, 42088689216, 608543191559, 9332562964480, 151252803045937, 2582250195499264, 46306562212010355, 870011934425816064, 17086276243125287917
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[1/(1 - Sin[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
A000111[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1) (2^(n + 1) - 1) BernoulliB[n + 1])/(n + 1)]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A000111[k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A331617
E.g.f.: exp(1 / (1 - arctan(x)) - 1).
Original entry on oeis.org
1, 1, 3, 11, 49, 265, 1683, 12035, 95169, 832337, 7998467, 83033403, 922112305, 10978263257, 139956480467, 1889161216179, 26798589518593, 401123509624737, 6346168059440515, 105040097140558699, 1805102151607613361, 32421358229074354601
Offset: 0
-
nmax = 21; CoefficientList[Series[Exp[1/(1 - ArcTan[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
A191700[0] = 1; A191700[n_] := A191700[n] = Sum[Binomial[n, k] If[OddQ[k], (-1)^Boole[IntegerQ[(k + 1)/4]] (k - 1)!, 0] A191700[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A191700[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
-
seq(n)={Vec(serlaplace(exp(1/(1 - atan(x + O(x*x^n))) - 1)))} \\ Andrew Howroyd, Jan 22 2020
A331618
E.g.f.: exp(1 / (1 - arctanh(x)) - 1).
Original entry on oeis.org
1, 1, 3, 15, 97, 785, 7523, 83615, 1053281, 14838177, 230832867, 3929944623, 72633052545, 1447981700529, 30960823851267, 706676217730239, 17145815895371073, 440594781536265537, 11952178787661839427, 341291300477569866831, 10231558345117929439521
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[1/(1 - ArcTanh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
A296676[0] = 1; A296676[n_] := A296676[n] = Sum[Binomial[n, k] If[OddQ[k], (k - 1)!, 0] A296676[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A296676[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
-
seq(n)={Vec(serlaplace(exp(1/(1 - atanh(x + O(x*x^n))) - 1)))} \\ Andrew Howroyd, Jan 22 2020
Showing 1-3 of 3 results.
Comments