cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A331608 E.g.f.: exp(1 / (1 - sinh(x)) - 1).

Original entry on oeis.org

1, 1, 3, 14, 85, 632, 5559, 56352, 645929, 8252352, 116189291, 1786361216, 29764770941, 534082233856, 10264484355103, 210312181051392, 4575364233983057, 105310034714202112, 2556360647841415379, 65261358332774277120, 1747713179543456515749
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[1/(1 - Sinh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    A006154[n_] := Sum[Sum[(-1)^j (k - 2 j)^n Binomial[k, j]/2^k, {j, 0, k}], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A006154[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A006154(k) * a(n-k).
a(n) ~ exp(1/(2^(3/2) * log(1 + sqrt(2))) - 3/4 + 2^(3/4) * sqrt(n) / sqrt(log(1 + sqrt(2))) - n) * n^(n - 1/4) / (2^(5/8) * log(1 + sqrt(2))^(n + 1/4)). - Vaclav Kotesovec, Jan 27 2020

A331607 E.g.f.: exp(1 / (1 - sin(x)) - 1).

Original entry on oeis.org

1, 1, 3, 12, 61, 372, 2639, 21280, 191833, 1908688, 20750331, 244478784, 3100597333, 42088689216, 608543191559, 9332562964480, 151252803045937, 2582250195499264, 46306562212010355, 870011934425816064, 17086276243125287917
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[1/(1 - Sin[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    A000111[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1) (2^(n + 1) - 1) BernoulliB[n + 1])/(n + 1)]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A000111[k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A000111(k+1) * a(n-k).
a(n) ~ 2^(n + 2/3) * exp(8/(3*Pi^2) - 5/6 + 2^(5/3) * n^(1/3) / Pi^(4/3) + 3 * 2^(1/3) * n^(2/3) / Pi^(2/3) - n) * n^(n - 1/6) / (sqrt(3) * Pi^(n + 1/3)). - Vaclav Kotesovec, Jan 26 2020

A331978 E.g.f.: -log(2 - cosh(x)) (even powers only).

Original entry on oeis.org

0, 1, 4, 46, 1114, 46246, 2933074, 263817646, 31943268634, 5009616448246, 987840438629794, 239217148602642046, 69790939492563608554, 24143849395162438623046, 9772368696995766705116914, 4575221153658910691872135246, 2453303387149157947685779986874
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2020

Keywords

Crossrefs

Programs

  • Maple
    ptan := proc(n) option remember;
        if irem(n, 2) = 0 then 0 else
        add(`if`(k=0, 1, binomial(n, k)*ptan(n - k)), k = 0..n-1, 2) fi end:
    A331978 := n -> ptan(2*n - 1):
    seq(A331978(n), n = 0..16);  # Peter Luschny, Jun 06 2022
  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[-Log[2 - Cosh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(0) = 0; a(n) = A094088(n) - (1/n) * Sum_{k=1..n-1} binomial(2*n,2*k) * A094088(n-k) * k * a(k).
a(n) ~ (2*n)! / (n * log(2 + sqrt(3))^(2*n)). - Vaclav Kotesovec, Feb 07 2020

A331612 E.g.f.: exp(1 / (2 - sec(x)) - 1) (even powers only).

Original entry on oeis.org

1, 1, 14, 481, 30449, 3064306, 448104029, 89621046061, 23468873468054, 7786478152466221, 3190021872763911149, 1580829351026679822586, 931656913226081002622489, 643808850722810399312420281, 515431991397502094847830786174, 473171296200788822261644150349881
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Exp[1/(2 - Sec[x]) - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
    e[0] = 1; e[n_] := e[n] = (-1)^n (1 - Sum[(-1)^j Binomial[2 n, 2 j] 3^(2 (n - j)) e[j], {j, 0, n - 1}]); A002114[n_] := e[n]/2^(2 n + 1); a[0] = 1; a[n_] := a[n] = Sum[Binomial[2 n - 1, 2 k - 1] A002114[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
    With[{nn=40},Take[CoefficientList[Series[Exp[1/(2-Sec[x])-1],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Aug 08 2023 *)

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(2*n-1,2*k-1) * A002114(k) * a(n-k).
a(n) ~ 2^(2*n) * 3^(2*n + 1/8) * exp(-5/12 + sqrt(3)/(4*Pi) + 2*3^(1/4)*sqrt(n/Pi) - 2*n) * n^(2*n - 1/4) / Pi^(2*n + 1/4). - Vaclav Kotesovec, Jan 26 2020
Showing 1-4 of 4 results.