A331666 Refactorable numbers (A033950) that are simultaneously arithmetic (A003601) and harmonic (A001599).
1, 672, 30240, 23569920, 45532800, 164989440, 447828480, 623397600, 1381161600, 1862023680, 2144862720, 3134799360, 3831421440, 13584130560, 14182439040, 16569653760, 21943595520, 22933532160, 34482792960, 35032757760, 40752391680, 53621568000, 56481384960
Offset: 1
Keywords
Examples
For m = 672, f = sigma(m)/tau(m) = 2016/24 = 84; g = m/tau(m) = 672/24 = 28; h = m * tau(m)/sigma(m) = 672*24/2016 = 8.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..118 (terms below 10^14)
Programs
-
Magma
[m: m in [1..10^6] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and IsIntegral(m / NumberOfDivisors(m)) and IsIntegral(m * NumberOfDivisors(m) / SumOfDivisors(m))]
-
Mathematica
Select[Range[3*10^7], Divisible[#, (d = DivisorSigma[0, #])] && Divisible[(s = DivisorSigma[1, #]), d] && Divisible[#*d, s] &] (* Amiram Eldar, Jan 24 2020 *)
-
PARI
is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(k % d) && !(s % d) && !((k * d) % s) ;} \\ Amiram Eldar, May 09 2024
Comments