A331690 a(n) = Sum_{k=0..n} Stirling2(n,k) * k! * n^(n - k).
1, 1, 4, 33, 456, 9445, 272448, 10386817, 503758720, 30202999821, 2189000524800, 188349613075393, 18954958449853440, 2203304642871358741, 292675996808408743936, 44022321302156791898625, 7438113993194856900034560, 1401876939543892434209075581
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..271
Crossrefs
Programs
-
Mathematica
Join[{1}, Table[Sum[StirlingS2[n, k] k! n^(n - k), {k, 0, n}], {n, 1, 17}]] Table[SeriesCoefficient[Sum[k! x^k/Product[(1 - n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 17}] Join[{1}, Table[n^(n + 1) PolyLog[-n, 1/(n + 1)]/(n + 1), {n, 1, 17}]]
-
PARI
a(n) = sum(k=0, n, stirling(n, k, 2)*k!*n^(n-k)); \\ Michel Marcus, Jan 24 2020
Formula
a(n) = [x^n] Sum_{k>=0} k! * x^k / Product_{j=1..k} (1 - n*j*x).
a(n) = n! * [x^n] n / (1 + n - exp(n*x)) for n > 0.
a(n) = n^(n + 1) * Sum_{k>=1} k^n / (n + 1)^(k + 1) for n > 0.
a(n) ~ n! * n^(n+1) / ((n+1) * log(n+1)^(n+1)). - Vaclav Kotesovec, Jun 06 2022