A331700 Binary XOR of squares of divisors of n.
1, 5, 8, 21, 24, 40, 48, 85, 89, 120, 120, 168, 168, 240, 240, 341, 288, 317, 360, 504, 384, 408, 528, 680, 617, 520, 640, 1008, 840, 816, 960, 1365, 1072, 1440, 1248, 1197, 1368, 1224, 1360, 2040, 1680, 1920, 1848, 1560, 1864, 2640, 2208, 2728, 2385, 3021
Offset: 1
Examples
For n = 6: - the divisors of 6 are 1, 2, 3 and 6, - so a(6) = 1 XOR 4 XOR 9 XOR 36 = 40.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..8192
- Rémy Sigrist, Colored scatterplot of the first 2^18 terms (where the color is function of A007814(n))
Programs
-
Mathematica
Table[BitXor@@(Divisors[n]^2),{n,50}] (* Harvey P. Dale, May 03 2023 *)
-
PARI
a(n) = my (s=0); fordiv (n, d, s=bitxor(s, d^2)); s
-
Python
from functools import reduce from operator import xor from sympy import divisors def A331700(n): return reduce(xor,(d**2 for d in divisors(n,generator=True))) # Chai Wah Wu, Jul 01 2022