A331801 Integers that are sum of two nonsquarefree numbers.
8, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1
Keywords
Examples
13 = 4 + 9 and 21 = 9 + 12 are terms of this sequence as 4, 9 and 12 are nonsquarefree numbers.
Links
- G. L. Honaker, Jr. and Chris K. Caldwell, Prime Curios! 23 (Rupinski)
Crossrefs
Programs
-
Mathematica
max = 85; Union @ Select[Total /@ Tuples[Select[Range[max], !SquareFreeQ[#] &], 2], # <= max &] (* Amiram Eldar, Feb 04 2020 *) Join[{8,12,13,16,17,18,20,21,22},Range[24,100]] (* or *) Complement[Range[100],{1,2,3,4,5,6,7,9,10,11,14,15,19,23}] (* Harvey P. Dale, Dec 04 2024 *)
-
PARI
isok(m) = {for (i=1, m-1, if (!issquarefree(i) && !issquarefree(m-i), return (1));); return(0);} \\ Michel Marcus, Jan 31 2020
Comments