cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331801 Integers that are sum of two nonsquarefree numbers.

Original entry on oeis.org

8, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1

Views

Author

Bernard Schott, Jan 26 2020

Keywords

Comments

Proposition: All integers > 23 are terms of this sequence (see link Prime Curios!).
Proof by exhaustion:
1) For numbers {4*k} with k>=6, then 4*k = 4*(k-1) + 4 is a term as 4*(k-1) and 4 are nonsquarefree;
2) For numbers {4*k+1} with k>=6, then 4*k+1 = 4*(k-2) + 9 is a term as 4*(k-2) and 9 are nonsquarefree;
3) For numbers {4*k+2} with k>=6, then 4*k+2 = 4*(k-4) + 18 is a term as 4*(k-4) and 18 are nonsquarefree;
4) For numbers {4*k+3}; with k=6, 27 = 9+18 is a term as 9 and 18 are nonsquarefree, and with k>=7, 4*k+3 = 4*(k-6) + 27 is also a term as 4*(k-6) and 27 are nonsquarefree.
Conclusion: every integer > 23 is sum of two nonsquarefree numbers (QED).

Examples

			13 = 4 + 9 and 21 = 9 + 12 are terms of this sequence as 4, 9 and 12 are nonsquarefree numbers.
		

Crossrefs

Cf. A005117 (squarefree), A013929 (nonsquarefree), A331802 (complement).
Cf. A000404 (sum of 2 nonzero squares), A018825 (not the sum of 2 nonzero squares).
Cf. A001694 (squareful), A052485 (not squareful), A076871 (sum of 2 squareful), A085253 (not the sum of 2 squareful).

Programs

  • Mathematica
    max = 85; Union @ Select[Total /@ Tuples[Select[Range[max], !SquareFreeQ[#] &], 2], # <= max &] (* Amiram Eldar, Feb 04 2020 *)
    Join[{8,12,13,16,17,18,20,21,22},Range[24,100]] (* or *) Complement[Range[100],{1,2,3,4,5,6,7,9,10,11,14,15,19,23}] (* Harvey P. Dale, Dec 04 2024 *)
  • PARI
    isok(m) = {for (i=1, m-1, if (!issquarefree(i) && !issquarefree(m-i), return (1));); return(0);} \\ Michel Marcus, Jan 31 2020