A331845 Number of compositions (ordered partitions) of n into distinct cubes.
1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 6, 24
Offset: 0
Examples
a(36) = 6 because we have [27,8,1], [27,1,8], [8,27,1], [8,1,27], [1,27,8] and [1,8,27].
Links
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`((i*(i+1)/2)^2
n, 0, b(n-i^3, i-1, p+1))+b(n, i-1, p))) end: a:= n-> b(n, iroot(n, 3), 0): seq(a(n), n=0..100); # Alois P. Heinz, Jan 30 2020 -
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[(i(i+1)/2)^2 < n, 0, If[n == 0, p!, If[i^3 > n, 0, b[n-i^3, i-1, p+1]] + b[n, i-1, p]]]; a[n_] := b[n, Floor[n^(1/3)], 0]; a /@ Range[0, 100] (* Jean-François Alcover, Oct 31 2020, after Alois P. Heinz *)