cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332115 a(n) = (10^(2n+1)-1)/9 + 4*10^n.

Original entry on oeis.org

5, 151, 11511, 1115111, 111151111, 11111511111, 1111115111111, 111111151111111, 11111111511111111, 1111111115111111111, 111111111151111111111, 11111111111511111111111, 1111111111115111111111111, 111111111111151111111111111, 11111111111111511111111111111, 1111111111111115111111111111111
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A107125 = {0, 1, 7, 45, 115, 681, 1248, ...} for the indices of primes.

Crossrefs

Cf. (A077783-1)/2 = A107125: indices of primes; A331868 & A331869 (non-palindromic variants).
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332125 .. A332195 (variants with different repeated digit 2, ..., 9).
Cf. A332112 .. A332119 (variants with different middle digit 2, ..., 9).

Programs

  • Maple
    A332115 := n -> (10^(2*n+1)-1)/9+4*10^n;
  • Mathematica
    Array[(10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0]
  • PARI
    apply( {A332115(n)=10^(n*2+1)\9+4*10^n}, [0..15])
    
  • Python
    def A332115(n): return 10**(n*2+1)//9+4*10**n

Formula

a(n) = A138148(n) + 5*10^n = A002275(2n+1) + 4*10^n.
G.f.: (5 - 404*x + 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A331869 Numbers n for which R(n) + 4*10^floor(n/2) is prime, where R(n) = (10^n-1)/9 (repunit: A002275).

Original entry on oeis.org

1, 3, 4, 15, 76, 91, 231, 1363, 1714, 1942, 2497, 4963, 5379, 12397, 23224, 26395
Offset: 1

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

For n > 1, the corresponding primes are a subset of A105992: near-repunit primes.
In base 10, R(n) + 4*10^floor(n/2) has ceiling(n/2)-1 digits 1, one digit 5, and again floor(n/2) digits 1, except for n = 0. For odd n, this is a palindrome (a.k.a. wing prime, cf. A077783: subsequence of odd terms), for even n the digit 5 is just left to the middle of the number.
See also the variant A331868 where the digit 5 is just to the right of the middle.

Examples

			For n = 1, R(1) + 4*10^floor(1/2) = 5 is prime.
For n = 3, R(3) + 4*10^floor(3/2) = 151 is prime.
For n = 4, R(4) + 4*10^floor(4/2) = 1511 is prime.
For n = 15, R(15) + 4*10^floor(15/2) = 111111151111111 is prime.
		

Crossrefs

Cf. A105992 (near-repunit primes), A002275 (repunits), A004023 (indices of prime repunits), A011557 (powers of 10).
Cf. A331862, A331861, A331865, A331866 (variants with digit 0, 2, 3 or 4 instead of 5), A331868 (variant with floor(n/2-1) instead of floor(n/2)).
Cf. A077783 (odd terms).

Programs

  • Mathematica
    Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 4*10^Floor[#/2]] &]
  • PARI
    for(n=0,9999,ispseudoprime(p=10^n\9+4*10^(n\2))&&print1(n","))

Extensions

a(12)-a(14) from Michael S. Branicky, Feb 03 2023
a(15)-a(16) from Michael S. Branicky, Apr 11 2023
Showing 1-2 of 2 results.