cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A331902 T(n, k) = floor(n/m) where m is the least positive integer such that floor(n/m) = floor(k/m). Square array read by antidiagonals, for n >= 0 and k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Jan 31 2020

Keywords

Comments

For any n > 0, the n-th row has A001651(n) nonzero terms.

Examples

			Array T(n, k) begins (with dots instead of 0's for readability):
   n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12
   ---+----------------------------------------------------
     0|   .   .   .   .   .   .   .   .   .   .   .   .   .
     1|   .   1   .   .   .   .   .   .   .   .   .   .   .
     2|   .   .   2   1   .   .   .   .   .   .   .   .   .
     3|   .   .   1   3   1   1   .   .   .   .   .   .   .
     4|   .   .   .   1   4   2   1   1   .   .   .   .   .
     5|   .   .   .   1   2   5   1   1   1   1   .   .   .
     6|   .   .   .   .   1   1   6   3   2   1   1   1   .
     7|   .   .   .   .   1   1   3   7   2   1   1   1   1
     8|   .   .   .   .   .   1   2   2   8   4   2   2   1
     9|   .   .   .   .   .   1   1   1   4   9   3   3   1
    10|   .   .   .   .   .   .   1   1   2   3  10   5   2
    11|   .   .   .   .   .   .   1   1   2   3   5  11   2
    12|   .   .   .   .   .   .   .   1   1   1   2   2  12
		

Crossrefs

Programs

  • PARI
    T(n,k) = for (x=1, oo, if (n\x==k\x, return (n\x)))

Formula

T(n, k) = floor(n/A331886(n, k)) = floor(k/A331886(n, k)).
T(n, k) = T(k, n).
T(n, k) = 0 iff max(n, k) >= 2*min(n, k).
T(n, n+1) = A213633(n+1).

A332013 T(n, k) is the least positive m such that floor(n/m) AND floor(k/m) = 0 (where AND denotes the bitwise AND operator). Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 3, 3, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 5, 2, 3, 2, 1, 1, 1, 3, 3, 5, 5, 3, 3, 1, 1, 1, 2, 1, 3, 3, 6, 3, 3, 1, 2, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2, 3, 2, 1, 3, 7, 3, 1
Offset: 0

Views

Author

Rémy Sigrist, Feb 04 2020

Keywords

Comments

Sierpinski gasket appears at different scales in the representation of the table (see illustration in Links section).

Examples

			Array T(n, k) begins:
  n\k|  0  1  2  3  4  5  6  7  8  9 10 11 12
  ---+---------------------------------------
    0|  1  1  1  1  1  1  1  1  1  1  1  1  1
    1|  1  2  1  2  1  2  1  2  1  2  1  2  1
    2|  1  1  3  3  1  1  3  3  1  1  3  3  1
    3|  1  2  3  4  1  2  3  3  1  2  4  4  1
    4|  1  1  1  1  5  5  3  3  1  1  1  1  3
    5|  1  2  1  2  5  6  3  3  1  2  1  2  3
    6|  1  1  3  3  3  3  7  7  1  1  4  4  3
    7|  1  2  3  3  3  3  7  8  1  2  4  4  3
    8|  1  1  1  1  1  1  1  1  9  9  5  5  3
    9|  1  2  1  2  1  2  1  2  9 10  5  5  3
   10|  1  1  3  4  1  1  4  4  5  5 11 11  3
   11|  1  2  3  4  1  2  4  4  5  5 11 12  3
   12|  1  1  1  1  3  3  3  3  3  3  3  3 13
		

Crossrefs

Programs

  • PARI
    T(n,k) = for (m=1, oo, if (bitand(n\m, k\m)==0, return (m)))

Formula

T(n, k) = T(k, n).
T(n, k) = 1 iff n AND k = 0.
T(n, n) = n+1.
T(n, n+1) = A000265(n+1).
Showing 1-2 of 2 results.