cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331901 Number of compositions (ordered partitions) of the n-th prime into distinct prime parts.

Original entry on oeis.org

1, 1, 3, 3, 1, 3, 25, 9, 61, 91, 99, 151, 901, 303, 1759, 3379, 5239, 4713, 8227, 12901, 12537, 23059, 65239, 159421, 232369, 489817, 351237, 726295, 564363, 1101883, 2517865, 6916027, 11825821, 4942227, 27166753, 21280053, 39547957, 52630273, 113638975
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 31 2020

Keywords

Examples

			a(4) = 3 because we have [7], [5, 2] and [2, 5].
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; `if`(n<1, 0, ithprime(n)+s(n-1)) end:
    b:= proc(n, i, t) option remember; `if`(s(i)`if`(p>n, 0, b(n-p, i-1, t+1)))(ithprime(i))+b(n, i-1, t)))
        end:
    a:= n-> b(ithprime(n), n, 0):
    seq(a(n), n=1..42);  # Alois P. Heinz, Jan 31 2020
  • Mathematica
    s[n_] := s[n] = If[n < 1, 0, Prime[n] + s[n - 1]];
    b[n_, i_, t_] := b[n, i, t] = If[s[i] < n, 0, If[n == 0, t!, Function[p, If[p > n, 0, b[n - p, i - 1, t + 1]]][Prime[i]] + b[n, i - 1, t]]];
    a[n_] := b[Prime[n], n, 0];
    Array[a, 42] (* Jean-François Alcover, Nov 26 2020, after Alois P. Heinz *)

Formula

a(n) = A219107(A000040(n)).