A331901 Number of compositions (ordered partitions) of the n-th prime into distinct prime parts.
1, 1, 3, 3, 1, 3, 25, 9, 61, 91, 99, 151, 901, 303, 1759, 3379, 5239, 4713, 8227, 12901, 12537, 23059, 65239, 159421, 232369, 489817, 351237, 726295, 564363, 1101883, 2517865, 6916027, 11825821, 4942227, 27166753, 21280053, 39547957, 52630273, 113638975
Offset: 1
Keywords
Examples
a(4) = 3 because we have [7], [5, 2] and [2, 5].
Links
Programs
-
Maple
s:= proc(n) option remember; `if`(n<1, 0, ithprime(n)+s(n-1)) end: b:= proc(n, i, t) option remember; `if`(s(i)
`if`(p>n, 0, b(n-p, i-1, t+1)))(ithprime(i))+b(n, i-1, t))) end: a:= n-> b(ithprime(n), n, 0): seq(a(n), n=1..42); # Alois P. Heinz, Jan 31 2020 -
Mathematica
s[n_] := s[n] = If[n < 1, 0, Prime[n] + s[n - 1]]; b[n_, i_, t_] := b[n, i, t] = If[s[i] < n, 0, If[n == 0, t!, Function[p, If[p > n, 0, b[n - p, i - 1, t + 1]]][Prime[i]] + b[n, i - 1, t]]]; a[n_] := b[Prime[n], n, 0]; Array[a, 42] (* Jean-François Alcover, Nov 26 2020, after Alois P. Heinz *)