A331921 Number of iterations of the map G -> Aut(G) on the cyclic group of order n needed to reach stability; or -1 if the iteration never stabilizes.
0, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 2, 2, 3, 3, 4, 2, 2, 4, 5, 3, 3, 3, 4, 2, 3, 2, 3
Offset: 1
Examples
Aut(C1)=C1 so a(1)=0. Aut(C2)=C1 so a(2)=1. Aut(C8)=C2xC2, Aut(C2xC2)=S3, Aut(S3)=S3, so a(8)=2 (whereas A003434(8)=3). Aut(C15)=C2xC4, Aut(C2xC4)=D8, Aut(D8)=D8, so a(15)=2 (whereas A185816(15)=3).
Links
- A. P. Goucher, Iterated automorphism groups of finite groups, MathOverflow (2018).
- G. Muller, Does Aut(Aut(...Aut(G)...)) stabilize?, MathOverflow (2009).
- S. Palcoux, On the iterated automorphism groups of the cyclic groups, MathOverflow (2020).
- Wikipedia, Multiplicative group of integers modulo n.
Programs
-
GAP
gap> LoadPackage("sonata"); gap> L:=[];; SG:=[];; for n in [1..31] do a:=0; C:=CyclicGroup(n); A:=AutomorphismGroup(C); while Order(C)<>Order(A) or not IsIsomorphicGroup(A,C) do a:=a+1; C:=A; A:=AutomorphismGroup(A); od; Add(L,a); Add(SG,IdGroup(A)); od; gap> L; [ 0, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 2, 2, 3, 3, 4, 2, 2, 4, 5, 3, 3, 3, 4, 2, 3, 2, 3 ] gap> SG; [ [ 1, 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 1 ], [ 6, 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 1 ], [ 6, 1 ], [ 6, 1 ], [ 1, 1 ], [ 8, 3 ], [ 8, 3 ], [ 8, 3 ], [ 1, 1 ], [ 1, 1 ], [ 8, 3 ], [ 12, 4 ], [ 1, 1 ], [ 1, 1 ], [ 336, 208 ], [ 8, 3 ], [ 6, 1 ], [ 1, 1 ], [ 12, 4 ], [ 12, 4 ], [ 8, 3 ], [ 8, 3 ] ] gap> Set(SG); [ [ 1, 1 ], [ 6, 1 ], [ 8, 3 ], [ 12, 4 ], [ 336, 208 ] ] # It is the list of IdGroup for C1, S3, D8, D12 and PGL(2,7). # The above program works well for n<32. Beyond, it will work as long as there is no loop of length>1 and a(n) finite, which (for small n) is very likely (the opposite would be a breakthrough), otherwise it will just not end. Moreover, if Order(A) is too big then IdGroup(A) will not work, because the SmallGroup library of GAP is finite.
Extensions
Escape clause added by Jianing Song, Aug 13 2023
Comments