A331934 Number of semi-lone-child-avoiding rooted trees with n unlabeled vertices.
1, 1, 1, 2, 4, 7, 15, 29, 62, 129, 279, 602, 1326, 2928, 6544, 14692, 33233, 75512, 172506, 395633, 911108, 2105261, 4880535, 11346694, 26451357, 61813588, 144781303, 339820852, 799168292, 1882845298, 4443543279, 10503486112, 24864797324, 58944602767, 139918663784
Offset: 1
Keywords
Examples
The a(1) = 1 through a(7) = 15 trees: o (o) (oo) (ooo) (oooo) (ooooo) (oooooo) (o(o)) (o(oo)) (o(ooo)) (o(oooo)) (oo(o)) (oo(oo)) (oo(ooo)) ((o)(o)) (ooo(o)) (ooo(oo)) ((o)(oo)) (oooo(o)) (o(o)(o)) ((o)(ooo)) (o(o(o))) ((oo)(oo)) (o(o)(oo)) (o(o(oo))) (o(oo(o))) (oo(o)(o)) (oo(o(o))) ((o)(o)(o)) ((o)(o(o))) (o((o)(o)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
Programs
-
Mathematica
sse[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Union[Sort/@Tuples[sse/@c]]]/@Rest[IntegerPartitions[n-1]]]; Table[Length[sse[n]],{n,10}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(v=[1,1]); for(n=2, n-1, v=concat(v, EulerT(v)[n] - v[n])); v} \\ Andrew Howroyd, Feb 09 2020
Formula
Product_{k > 0} 1/(1 - x^k)^a(k) = A(x) + A(x)/x - x where A(x) = Sum_{k > 0} x^k a(k).
Euler transform is b(1) = 1, b(n > 1) = a(n) + a(n + 1).
Extensions
Terms a(25) and beyond from Andrew Howroyd, Feb 09 2020
Comments