A331941 Hardy-Littlewood constant for the polynomial x^2 + 1.
6, 8, 6, 4, 0, 6, 7, 3, 1, 4, 0, 9, 1, 2, 3, 0, 0, 4, 5, 5, 6, 0, 9, 6, 3, 4, 8, 3, 6, 3, 5, 0, 9, 4, 3, 4, 0, 8, 9, 1, 6, 6, 5, 5, 0, 6, 2, 7, 8, 7, 9, 7, 7, 8, 9, 6, 8, 1, 1, 7, 0, 7, 3, 6, 6, 3, 9, 2, 1, 1, 1, 3, 3, 5, 8, 6, 8, 5, 1, 1, 5, 8, 6, 3, 8, 5, 9
Offset: 0
Examples
0.686406731409123004556096348363509434089166550627879778968117...
References
- Henri Cohen, Number Theory, Vol II: Analytic and Modern Tools, Springer (Graduate Texts in Mathematics 240), 2007.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 85.
Links
- Karim Belabas and Henri Cohen, Computation of the Hardy-Littlewood constant for quadratic polynomials, PARI/GP script, 2020.
- Henri Cohen, High-precision computation of Hardy-Littlewood constants, (1998). [pdf copy, with permission]
- Keith Conrad, Hardy-Littlewood Constants, (2003).
Programs
-
PARI
\\ See Belabas, Cohen link. Run as HardyLittlewood2(x^2+1)/2 after setting the required precision.
Formula
Equals (1/2)*Product_{p=primes} (1 - Kronecker(-4,p)/(p - 1)).
Equals A199401/2.