cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A206709 Number of primes of the form b^2 + 1 for b <= 10^n.

Original entry on oeis.org

5, 19, 112, 841, 6656, 54110, 456362, 3954181, 34900213, 312357934, 2826683630, 25814570672, 237542444180, 2199894223892
Offset: 1

Views

Author

Michel Lagneau, Feb 13 2012

Keywords

Comments

Conjecture: The number of primes of the form b^2 + 1 and less than n is asymptotic to 3*n/(4*log(n)).
Examples:
n = 10^3, a(n) = 112 and 3*10^3/(4*log(10^3)) = 108.573...;
n = 10^4, a(n) = 841 and 3*10^4/(4*log(10^4)) = 814.302...;
n = 10^10, a(n) = 312357934 and 3*10^10/(4*log(10^10)) = 325720861.42...
a(n) = A083844(2*n), but not always! The only known exception to this rule is at n = 1. - Arkadiusz Wesolowski, Jul 21 2012
From Jacques Tramu, Sep 14 2018: (Start)
In the table below, K = 0.686413 and pi(10^n) = A000720(10^n):
.
n a(n) K*pi(10^n)
== =========== ===========
1 5 3
2 19 17
3 112 115
4 841 843
5 6656 6584
6 54110 53882
7 456362 456175
8 3954181 3954737
9 34900213 34902408
10 312357934 312353959
11 2826683630 2826686358
12 25814570672 25814559712
(End)
For a comparison with the estimate that results from the Hardy and Littlewood Conjecture F, see A331942. - Hugo Pfoertner, Feb 03 2020

Examples

			a(2) = 19 because there are 19 primes of the form b^2 + 1 for b less than 10^2: 2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101 and 8837.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 264.

Crossrefs

Programs

  • Maple
    for n from 1 to 9 do : i:=0:for m from 1 to 10^n do:x:=m^2+1:if type(x,prime)=true then i:=i+1:else fi:od: printf ( "%d %d \n",n,i):od:
  • Mathematica
    1 + Accumulate@ Array[Count[Range[10^(# - 1) + 1, 10^#], ?(PrimeQ[#^2 + 1] &)] &, 7] (* _Michael De Vlieger, Sep 18 2018 *)
  • PARI
    a(n)=sum(n=1,10^n,ispseudoprime(n^2+1)) \\ Charles R Greathouse IV, Feb 13 2012
    
  • Python
    from sympy import isprime
    def A206709(n):
        c, b, b2, n10 = 0, 1, 2, 10**n
        while b <= n10:
            if isprime(b2):
                c += 1
            b += 1
            b2 += 2*b - 1
        return c # Chai Wah Wu, Sep 17 2018

Extensions

a(11)-a(12) from Arkadiusz Wesolowski, Jul 21 2012
a(13)-a(14) from Jinyuan Wang, Feb 24 2020

A199401 Decimal expansion of constant Product_{p>=3} (1 - (-1)^((p-1)/2)/(p-1)). Hardy-Littlewood constant of x^2 + 1.

Original entry on oeis.org

1, 3, 7, 2, 8, 1, 3, 4, 6, 2, 8, 1, 8, 2, 4, 6, 0, 0, 9, 1, 1, 2, 1, 9, 2, 6, 9, 6, 7, 2, 7, 0, 1, 8, 8, 6, 8, 1, 7, 8, 3, 3, 3, 1, 0, 1, 2, 5, 5, 7, 5, 9, 5, 5, 7, 9, 3, 6, 2, 3, 4, 1, 4, 7, 3, 2, 7, 8, 4, 2, 2, 2, 6, 7, 1, 7, 3, 7, 0, 2, 3, 1, 7, 2, 7, 7, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 05 2011

Keywords

Comments

Arises in studying A002496.
The constant is Product_{primes p} (1-chi(p)/(p-1)) where chi is the Dirichlet character A101455. Its Euler expansion is (1/(L(m=4,r=2,s=1)* zeta(m=4,n=3,s=2)) *Product_{s>=2} zeta(m=4,n=1,s)^gamma(s), where L and zeta are the functions tabulated in arXiv:1008.2547 and gamma is the sequence A001037. In particular L(m=4,r=2,s=1) = A003881 and zeta(m=4,n=1,s=2)=A175647. - R. J. Mathar, Nov 29 2011

Examples

			1.372813462818246009112192696727...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 85.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 264.

Crossrefs

Cf. A002496.
Equals 2*constant given by A331941.

Programs

  • PARI
    \\ See Belabas, Cohen link. Run as HardyLittlewood2(x^2+1) after setting the required precision.

Extensions

Extended title, a(30) and beyond from Hugo Pfoertner, Feb 16 2020

A331945 Factors k > 0 such that the polynomial k*x^2 + 1 produces a record of its Hardy-Littlewood constant.

Original entry on oeis.org

1, 2, 3, 4, 12, 18, 28, 58, 190, 462, 708, 5460, 10602, 39292, 141100, 249582, 288502
Offset: 1

Views

Author

Hugo Pfoertner, Feb 10 2020

Keywords

Comments

a(18) > 510000.
See A331940 for more information on the Hardy-Littlewood constant. The polynomials described by this sequence have an increasing rate of generating primes.
The following table provides the record values of the Hardy-Littlewood constant C, together with the number of primes np generated by the polynomial P(x) = a(n)*x^2 + 1 for 1 <= x <= r = 10^8 and the actual ratio np*(P(r)/r)/Integral_{x=2..P(r)} 1/log(x) dx.
a(n) C np C from ratio
1 1.37281 3954181 1.41606 (C = A199401)
2 1.42613 4027074 1.47010
3 1.68110 4696044 1.73337
4 2.74563 7605407 2.82915
12 3.36220 9037790 3.46135
.. ....... ....... .......
249582 7.90518 16760196 8.08633
288502 8.21709 17367067 8.40431

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

A331947 Factors k > 1 such that the polynomial k*x^2 - 1 produces a record of its Hardy-Littlewood constant.

Original entry on oeis.org

2, 12, 20, 68, 90, 98, 132, 252, 318, 362, 398, 1722, 259668, 315180, 452042
Offset: 1

Views

Author

Hugo Pfoertner, Feb 10 2020

Keywords

Comments

a(16) > 710000.
See A331940 for more information on the Hardy-Littlewood constant. The polynomials described by this sequence have an increasing rate of generating primes.
The following table provides the record values of the Hardy-Littlewood constant C, together with the number of primes np generated by the polynomial P(x) = a(n)*x^2 - 1 for 2 <= x <= r = 10^8 and the actual ratio np*(P(r)/r)/Integral_{x=2..P(r)} 1/log(x) dx.
a(n) C np C from ratio
2 3.70011 10448345 3.81422
12 4.15027 11154934 4.27219
20 4.43326 11753085 4.56136
68 5.01601 12883801 5.15797
.. ....... ........ .......
315180 7.82318 16502584 8.00057
452042 7.85323 16434699 8.02696

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

A331949 Addends k > 0 such that x^2 + k produces a new minimum of its Hardy-Littlewood Constant.

Original entry on oeis.org

1, 2, 5, 11, 14, 26, 41, 89, 101, 194, 314, 341, 446, 689, 1091, 1154, 1889, 2141, 3449, 3506, 5561, 6254, 8126, 8774, 10709, 13166, 15461, 23201, 24569, 30014, 81626, 162686
Offset: 1

Views

Author

Hugo Pfoertner, Feb 04 2020

Keywords

Comments

This sequence is almost identical to A003420. However, there is an additional term 446 and after 30014 the number 81626 follows, while in A003420, 81149 is present between 30014 and 81626. With
C(m) = Product_{p=primes} 1 - Kronecker(-4*m,p)/(p - 1) (Hardy-Littlewood)
L1(m) = Sum_{j>0} Kronecker(-4*m,j)/j (L-function of the Dirichlet series)
the following table shows the differences:
Criterion
decrease increase
k C L1
341 0.28309 2.38177
446 0.28272 2.38014 not in A003420 because L1(446) < L1(341)
689 0.28193 2.39370
...
30014 0.21541 3.08274
81149 0.21560 3.08792 not in this sequence because C(81149) > C(30014)
81626 0.20883 3.17785
162686 0.20478 3.24017

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

Programs

  • PARI
    \\ The function HardyLittlewood2 is provided at the Belabas, Cohen link.
    hl2min=oo; for(add=1,500,my(hl=HardyLittlewood2(n^2+add));if(hl
    				

A331942 a(n) = number of primes of the form P(k) = k^2 + 1 <= 10^n as predicted by the Hardy and Littlewood Conjecture F, rounded to nearest integer. The actual number of primes is A083844(n).

Original entry on oeis.org

1, 4, 9, 20, 48, 121, 317, 855, 2356, 6609, 18787, 53970, 156385, 456404, 1340088, 3955219, 11726332, 34903256, 104251560, 312353236, 938461459, 2826668497, 8533343468, 25814350227, 78239112814, 237541788793, 722354115787, 2199893807666, 6708847354653, 20485514756657
Offset: 1

Views

Author

Hugo Pfoertner, Feb 02 2020

Keywords

Comments

Comparison of actual and approximated number of primes < 10^n:
Limit
10^n
| A083844(n)
| | a(n)
| | | (a(n) - A083844(n))/A083844(n)
10^1 2 1 -0.50000
10^2 4 4 0.0
10^3 10 9 -0.10000
10^4 19 20 0.052632
10^5 51 48 -0.058824
10^6 112 121 0.080357
10^7 316 317 0.0031646
10^8 841 855 0.016647
10^9 2378 2356 -0.0092515
10^10 6656 6609 -0.0070613
10^11 18822 18787 -0.0018595
10^12 54110 53970 -0.0025873
10^13 156081 156385 0.0019477
10^14 456362 456404 9.2032E-5
10^15 1339875 1340088 0.00015897
10^16 3954181 3955219 0.00026251
10^17 11726896 11726332 -4.8095E-5
10^18 34900213 34903256 8.7191E-5
10^19 104248948 104251560 2.5055E-5
10^20 312357934 312353236 -1.5040E-5
10^21 938457801 938461459 3.8979E-6
10^22 2826683630 2826668497 -5.3536E-6
10^23 8533327397 8533343468 1.8833E-6
10^24 25814570672 25814350227 -8.5396E-6
10^25 78239402726 78239112814 -3.7054E-6
10^26 237542444180 237541788793 -2.7590E-6
10^27 722354138859 722354115787 -3.1940E-8
10^28 2199894223892 2199893807666 -1.8920E-7

Crossrefs

Programs

  • PARI
    C=0.68640673140912300455609634836350943408916655062787977896811707366392;
    x=1.0;S10=sqrt(10);for(k=1,30,x*=s10;print1(round(C*intnum(y=2,x,1/log(y))),", "))

Formula

b(m) = round (C * Integral_{x=2..m} 1/log(x) dx), with C ~= 0.6864067314..., the Hardy-Littlewood constant for k^2 + 1 (A331941); a(n) = b(10^(n/2)).

A337606 Decimal expansion of the Gaussian twin prime constant: the Hardy-Littlewood constant for A096012.

Original entry on oeis.org

4, 8, 7, 6, 2, 2, 7, 7, 8, 1, 1, 1, 5, 7, 1, 7, 6, 8, 6, 1, 1, 6, 4, 6, 3, 9, 1, 4, 5, 2, 3, 8, 8, 4, 2, 3, 1, 3, 1, 6, 7, 7, 1, 2, 4, 4, 2, 9, 7, 3, 5, 7, 6, 3, 7, 7, 0, 1, 8, 1, 5, 8, 2, 9, 7, 2, 3, 6, 5, 6, 9, 0, 3, 4, 5, 4, 0, 0, 9, 2, 3, 4, 9, 8, 1, 0, 6, 6, 6, 1, 7, 4, 6, 4, 8, 5, 1, 9, 1, 4, 3, 3, 2, 8, 4, 1
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

The name of this constant was suggested by Finch (2003).
Gaussian twin primes on the line x + i in the complex plane are Gaussian primes pair of the form (m - 1 + i, m + 1 + i). The numbers m are numbers such that (m-1)^2 + 1 and (m+1)^2 + 1 are both primes (A096012 plus 1).
Shanks (1960) conjectured that the number of these pairs with m <= x is asymptotic to c * li_2(x), where li_2(x) = Integral_{t=2..n} (1/log(t)^2) dt, and c is this constant. He defined c as in the formula section and evaluated it by 0.4876.
The first 100 digits of 4*c were calculated by Ettahri et al. (2019).

Examples

			0.487622778111571768611646391452388423131677124429735...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 90.

Crossrefs

Similar constants: A005597, A331941, A337607, A337608.

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi^2/8 * Zs[4, 1, 4]/Z[4, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

Formula

Equals (Pi^2/8) * Product_{primes p == 1 (mod 4)} (1 - 4/p)*((p + 1)/(p - 1))^2.

Extensions

More digits from Vaclav Kotesovec, Jan 15 2021

A337607 Decimal expansion of Shanks's constant: the Hardy-Littlewood constant for A000068.

Original entry on oeis.org

6, 6, 9, 7, 4, 0, 9, 6, 9, 9, 3, 7, 0, 7, 1, 2, 2, 0, 5, 3, 8, 9, 2, 2, 4, 3, 1, 5, 7, 1, 7, 6, 4, 4, 0, 6, 6, 8, 8, 3, 7, 0, 1, 5, 7, 4, 3, 6, 4, 8, 2, 4, 1, 8, 5, 7, 3, 2, 9, 8, 5, 2, 2, 8, 4, 5, 2, 4, 6, 7, 9, 9, 9, 5, 6, 4, 5, 7, 1, 4, 7, 2, 7, 3, 1, 5, 0, 6, 2, 1, 0, 2, 1, 4, 3, 5, 9, 3, 7, 3, 5, 0, 2, 7, 3, 2
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

Named by Finch (2003) after the American mathematician Daniel Shanks (1917 - 1996).
Shanks (1961) conjectured that the number of primes of the form m^4 + 1 (A037896) with m <= x is asymptotic to c * li(x), where li(x) is the logarithmic integral function and c is this constant. He defined c as in the formula section and evaluated it by 0.66974.
The first 100 digits of this constant were calculated by Ettahri et al. (2019).

Examples

			0.669740969937071220538922431571764406688370157436482...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 90.

Crossrefs

Similar constants: A005597, A331941, A337606, A337608.

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi^2/(16*Log[1+Sqrt[2]]) * Zs[8, 1, 4]/Z[8, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

Formula

Equals (Pi^2/(16*log(1+sqrt(2)))) * Product_{primes p == 1 (mod 8)} (1 - 4/p)*((p + 1)/(p - 1))^2 = (Pi/8) * A088367 * A334826.

Extensions

More digits from Vaclav Kotesovec, Jan 15 2021

A337608 Decimal expansion of Lal's constant: the Hardy-Littlewood constant for A217795.

Original entry on oeis.org

7, 9, 2, 2, 0, 8, 2, 3, 8, 1, 6, 7, 5, 4, 1, 6, 6, 8, 7, 7, 5, 4, 5, 5, 5, 6, 6, 5, 7, 9, 0, 2, 4, 1, 0, 1, 1, 2, 8, 9, 3, 2, 2, 5, 0, 9, 8, 6, 2, 2, 1, 1, 1, 7, 2, 2, 7, 9, 7, 3, 4, 5, 2, 5, 6, 9, 5, 1, 4, 1, 5, 4, 9, 4, 4, 1, 2, 4, 9, 0, 6, 6, 0, 2, 9, 5, 3, 8, 8, 3, 9, 8, 0, 2, 7, 5, 2, 9, 2, 7, 8, 7, 3, 9, 7, 3
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

Shanks (1967) conjectured that the number of primes of the form (m + 1)^4 + 1 such that (m - 1)^4 + 1 is also a prime (A217795 plus 1), with m <= x, is asymptotic to c * li_2(x), where li_2(x) = Integral_{t=2..n} (1/log(t)^2) dt, and c is this constant. He defined c as in the formula section, evaluated it by 0.79220 and named it after the mathematician Mohan Lal, who conjectured the asymptotic formula without evaluating this constant.
The first 100 digits of this constant were calculated by Ettahri et al. (2019).

Examples

			0.792208238167541668775455566579024101128932250986221...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 90-91.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121;
    f[p_] := (p-8)*(p+1)^4/((p-1)^4*p);
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*(P[8, 1, m] - 1/17^m); sump = sump + difp; m++];
    RealDigits[Chop[N[f[17] * Pi^4/(2^7 * Log[1+Sqrt[2]]^2) * Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)

Formula

Equals (Pi^4/(2^7 * log(1+sqrt(2))^2)) * Product_{primes p == 1 (mod 8)} (1 - 4/p)^2 * ((p + 1)/(p - 1))^4 * p*(p-8)/(p-4)^2 = (Pi^2/32) * A088367^2 * A334826^2 * A210630 = 2 * A337607^2 * A210630.

Extensions

More terms from Vaclav Kotesovec, Jan 16 2021
Showing 1-9 of 9 results.