cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A215047 Number of primes of the form 1 + b^2 for 1 < b < 10^n.

Original entry on oeis.org

3, 18, 111, 840, 6655, 54109, 456361, 3954180, 34900212, 312357933, 2826683629, 25814570671, 237542444179, 2199894223891
Offset: 1

Views

Author

Henryk Dabrowski, Aug 01 2012

Keywords

Comments

Primes 1 + b^2 are a form of generalized Fermat primes.
It is conjectured that a(n) is asymptotic to 0.6864067*li(10^n).

Examples

			a(1) = 3 because the only generalized Fermat primes F_1(b) where b < 10^1 are the primes: 5, 17, 37.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[2,10^n-1]^2 + 1, PrimeQ]], {n, 5}] (* T. D. Noe, Aug 02 2012 *)
  • PARI
    a(n) = sum(b=1,10^n/2-1,isprime((2*b)^2+1))

Formula

a(n) = A083844(2*n) - 1.

Extensions

a(13)-a(14) from Jinyuan Wang, Feb 23 2020

A331941 Hardy-Littlewood constant for the polynomial x^2 + 1.

Original entry on oeis.org

6, 8, 6, 4, 0, 6, 7, 3, 1, 4, 0, 9, 1, 2, 3, 0, 0, 4, 5, 5, 6, 0, 9, 6, 3, 4, 8, 3, 6, 3, 5, 0, 9, 4, 3, 4, 0, 8, 9, 1, 6, 6, 5, 5, 0, 6, 2, 7, 8, 7, 9, 7, 7, 8, 9, 6, 8, 1, 1, 7, 0, 7, 3, 6, 6, 3, 9, 2, 1, 1, 1, 3, 3, 5, 8, 6, 8, 5, 1, 1, 5, 8, 6, 3, 8, 5, 9
Offset: 0

Views

Author

Hugo Pfoertner, Feb 02 2020

Keywords

Examples

			0.686406731409123004556096348363509434089166550627879778968117...
		

References

  • Henri Cohen, Number Theory, Vol II: Analytic and Modern Tools, Springer (Graduate Texts in Mathematics 240), 2007.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 85.

Crossrefs

Programs

  • PARI
    \\ See Belabas, Cohen link. Run as HardyLittlewood2(x^2+1)/2 after setting the required precision.

Formula

Equals (1/2)*Product_{p=primes} (1 - Kronecker(-4,p)/(p - 1)).
Equals A199401/2.

A302434 Number of primes of the form b^2 + 2 for b <= 10^n.

Original entry on oeis.org

4, 12, 69, 447, 3423, 27869, 236985, 2054022, 18127693, 162237123
Offset: 1

Views

Author

Seiichi Manyama, Apr 07 2018

Keywords

Comments

From Jacques Tramu, Sep 13 2018: (Start)
Table C(i) = a(i)/(n*log(n)), with n = 10^i:
a(1) = 4 C(1) = 0.92103404
a(2) = 12 C(2) = 0.55262042
a(3) = 69 C(3) = 0.47663511
a(4) = 447 C(4) = 0.41170221
a(5) = 3423 C(5) = 0.39408744
a(6) = 27869 C(6) = 0.38502446
a(7) = 236985 C(7) = 0.38197469
a(8) = 2054022 C(8) = 0.37836484
a(9) = 18127693 C(9) = 0.37566500
a(10) = 162237123 C(10) = 0.37356478
(End)

Examples

			a(1) = 4 because there are 4 primes of the form b^2+2 for b <= 10: 2, 3, 11 and 83.
		

Crossrefs

Number of primes of the form b^2+m for b <= 10^n: A302443 (m=-3), A302442 (m=-2), A206709 (m=1), this sequence (m=2), A302435 (m=3).
Cf. A056899.

Programs

  • PARI
    {a(n) = sum(k=0, 10^n, isprime(k^2+2))}

Extensions

a(10) from Jacques Tramu, Sep 13 2018

A302435 Number of primes of the form b^2+3 for b <= 10^n.

Original entry on oeis.org

5, 18, 110, 712, 5427, 44096, 373019, 3228862, 28494961
Offset: 1

Views

Author

Seiichi Manyama, Apr 07 2018

Keywords

Examples

			a(1) = 5 because there are 5 primes of the form b^2+3 for b <= 10: 3, 7, 19, 67 and 103.
		

Crossrefs

Number of primes of the form b^2+m for b <= 10^n: A302443 (m=-3), A302442 (m=-2), A206709 (m=1), A302434 (m=2), this sequence (m=3).
Cf. A049423.

Programs

  • PARI
    {a(n) = sum(k=0, 10^n, isprime(k^2+3))}

A302442 Number of primes of the form b^2-2 for b <= 10^n.

Original entry on oeis.org

5, 26, 157, 1153, 8888, 72928, 615643, 5328644, 47034083, 420950239
Offset: 1

Views

Author

Seiichi Manyama, Apr 08 2018

Keywords

Comments

From Jacques Tramu, Sep 13 2018: (Start)
Table C(i) = a(i)/pi(10^i) = a(i)/A000720(10^i)
a(1) = 5 C(1) = 1.25000000
a(2) = 26 C(2) = 1.04000000
a(3) = 157 C(3) = 0.93452381
a(4) = 1153 C(4) = 0.93816111
a(5) = 8888 C(5) = 0.92660550
a(6) = 72928 C(6) = 0.92904278
a(7) = 615643 C(7) = 0.92636541
a(8) = 5328644 C(8) = 0.92487818
a(9) = 47034083 C(9) = 0.92500224
a(10) = 420950239 C(10) = 0.92505860
(End)

Examples

			a(1) = 5 because there are 5 primes of the form b^2-2 for b <= 10 : 2, 7, 23, 47 and 79.
		

Crossrefs

Number of primes of the form b^2+m for b <= 10^n: A302443 (m=-3), this sequence (m=-2), A206709 (m=1), A302434 (m=2), A302435 (m=3).
Cf. A028871.

Programs

  • PARI
    {a(n) = sum(k=0, 10^n, isprime(k^2-2))}
    
  • Python
    from sympy import isprime
    def aupton(terms):
      s, alst = 0, []
      for n in range(1, terms+1):
        s += sum(isprime(b**2-2) for b in range(10**(n-1), 10**n))
        alst.append(s)
      return alst
    print(aupton(6)) # Michael S. Branicky, May 26 2021

Extensions

a(10) from Jacques Tramu, Sep 14 2018

A302443 Number of primes of the form b^2-3 for b <= 10^n.

Original entry on oeis.org

3, 19, 119, 849, 6663, 54514, 460019, 3982973, 35174007
Offset: 1

Views

Author

Seiichi Manyama, Apr 08 2018

Keywords

Examples

			a(1) = 3 because there are 3 primes of the form b^2-3 for b <= 10 : 13, 61 and 97.
		

Crossrefs

Number of primes of the form b^2+m for b <= 10^n: this sequence (m=-3), A302442 (m=-2), A206709 (m=1), A302434 (m=2), A302435 (m=3).
Cf. A028874.

Programs

  • PARI
    {a(n) = sum(k=0, 10^n, isprime(k^2-3))}

A301943 Number of primes of the form b^2+1 for b <= 10^n that end in 1.

Original entry on oeis.org

1, 4, 42, 279, 2236, 18155, 152020, 1317648, 11634451, 104116591, 942191087
Offset: 1

Views

Author

Seiichi Manyama, Mar 29 2018

Keywords

Examples

			101, 401, 1601 and 8101 are primes; so a(2) = 4.
		

Crossrefs

Programs

  • Mathematica
    c = k = 0; lst = {}; Do[ While[k <= 10^n, If[ PrimeQ[k^2 + 1], c++]; k+=10]; AppendTo[lst, c]; Print[c], {n, 9}] (* Robert G. Wilson v, Mar 30 2018 *)
  • Python
    from sympy import isprime
    def A301943(n):
        return sum(1 for i in range(1,10**(n-1)+1) if isprime(100*i**2+1)) # Chai Wah Wu, Mar 30 2018

Formula

a(n) + A301944(n) + 2 = A206709(n).

Extensions

a(10) from Robert G. Wilson v, Mar 31 2018
a(11) from Robert G. Wilson v, Apr 04 2018

A301944 Number of primes of the form b^2 + 1 for b <= 10^n that end in 7.

Original entry on oeis.org

2, 13, 68, 560, 4418, 35953, 304340, 2636531, 23265760, 208241341, 1884492541
Offset: 1

Views

Author

Seiichi Manyama, Mar 29 2018

Keywords

Examples

			17, 37, 197, 257, 577, 677, 1297, 2917, 3137, 4357, 5477, 7057 and 8837 are primes; so a(2) = 13.
		

Crossrefs

Formula

a(n) + A301943(n) + 2 = A206709(n).

Extensions

a(10)-a(11) from Jinyuan Wang, Feb 24 2020

A319228 Number of primes of the form b^2 + b + 1 for b <= 10^n.

Original entry on oeis.org

6, 32, 189, 1410, 10751, 88118, 745582, 6456835, 56988601, 510007598, 4615215645
Offset: 1

Views

Author

Seiichi Manyama, Sep 14 2018

Keywords

Examples

			a(1) = 6 because there are 6 primes of the form b^2 + b + 1 for b <= 10: 3, 7, 13, 31, 43 and 73.
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, 10^n, isprime(k^2+k+1))}
    
  • Python
    from sympy import isprime
    def A319228(n):
        c, b, b2, n10 = 0, 1, 3, 10**n
        while b <= n10:
            if isprime(b2):
                c += 1
            b += 1
            b2 += 2*b
        return c # Chai Wah Wu, Sep 17 2018

Extensions

a(10) from Chai Wah Wu, Sep 17 2018
a(11) from Chai Wah Wu, Sep 18 2018

A300363 Sum of primes of the form b^2+1 for b <= 10^n.

Original entry on oeis.org

2, 162, 45052, 29570385, 24699073806, 20281853994629, 16998638126185703, 14511042624337529267, 12647180923917812683382, 11222444317042682292853518, 10085250548770665025465417675
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2018

Keywords

Examples

			a(1) = 2 + 5 + 17 + 37 + 101 = 162.
a(2) = 2 + 5 + 17 + 37 + 101 + 197 + 257 + 401 + 577 + 677 + 1297 + 1601 + 2917 + 3137 + 4357 + 5477 + 7057 + 8101 + 8837 = 45052.
		

Crossrefs

Programs

  • PARI
    list(len) = {my(pow = 1, p, s = 0); for(k = 1, 10^len, p = k^2 + 1; if(isprime(p), s += p); if(k == pow, print1(s, ", "); pow *= 10));} \\ Amiram Eldar, Jul 18 2025

Extensions

a(8) corrected and a(9)-a(10) added by Amiram Eldar, Jul 18 2025
Showing 1-10 of 10 results.