A302435
Number of primes of the form b^2+3 for b <= 10^n.
Original entry on oeis.org
5, 18, 110, 712, 5427, 44096, 373019, 3228862, 28494961
Offset: 1
a(1) = 5 because there are 5 primes of the form b^2+3 for b <= 10: 3, 7, 19, 67 and 103.
A302442
Number of primes of the form b^2-2 for b <= 10^n.
Original entry on oeis.org
5, 26, 157, 1153, 8888, 72928, 615643, 5328644, 47034083, 420950239
Offset: 1
a(1) = 5 because there are 5 primes of the form b^2-2 for b <= 10 : 2, 7, 23, 47 and 79.
-
{a(n) = sum(k=0, 10^n, isprime(k^2-2))}
-
from sympy import isprime
def aupton(terms):
s, alst = 0, []
for n in range(1, terms+1):
s += sum(isprime(b**2-2) for b in range(10**(n-1), 10**n))
alst.append(s)
return alst
print(aupton(6)) # Michael S. Branicky, May 26 2021
A302443
Number of primes of the form b^2-3 for b <= 10^n.
Original entry on oeis.org
3, 19, 119, 849, 6663, 54514, 460019, 3982973, 35174007
Offset: 1
a(1) = 3 because there are 3 primes of the form b^2-3 for b <= 10 : 13, 61 and 97.
Showing 1-3 of 3 results.
Comments