cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A215050 Number of primes of the form 1 + b^16 for 1 < b < 10^n.

Original entry on oeis.org

1, 5, 48, 291, 2194, 17907, 152447, 1322985, 11669082
Offset: 1

Views

Author

Henryk Dabrowski, Aug 01 2012

Keywords

Comments

Primes 1 + b^16 are a form of generalized Fermat primes. It is conjectured that a(n) is asymptotic to 0.229464*li(10^n).

Examples

			a(1) = 1 because the only Fermat prime F_4(b) where b<10^1 is the prime 65537.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[2,10^n-1]^16 + 1, PrimeQ]], {n, 5}] (* T. D. Noe, Aug 02 2012 *)
    Module[{nn=8,t},t=Table[If[PrimeQ[n^16+1],1,0],{n,2,10^nn}];Table[Total[ Take[t,10^i-1]],{i,nn}]] (* Harvey P. Dale, Sep 14 2015 *)
  • PARI
    a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^16+1))

Formula

a(n) = A214455(16*n) - 1.

Extensions

a(9) from Kellen Shenton, Aug 10 2020

A215051 Number of primes of the form 1 + b^32 for 1 < b < 10^n.

Original entry on oeis.org

0, 3, 22, 146, 1062, 8963, 74951, 651537, 5740807, 51389252
Offset: 1

Views

Author

Henryk Dabrowski, Aug 01 2012

Keywords

Comments

Primes 1 + b^32 are a form of generalized Fermat primes.
It is conjectured that a(n) is asymptotic to 0.112903*li(10^n).

Examples

			a(2) = 3 because the Fermat numbers F_5(b) where b<10^2 are prime only for b = 30, 54, 96.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[2,10^n-1]^32 + 1, PrimeQ]], {n, 4}] (* T. D. Noe, Aug 01 2012 *)
  • PARI
    a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^32+1))

Formula

a(n) = A214956(32*n) - 1.

Extensions

a(9)-a(10) from Chai Wah Wu, Oct 18 2018

A206709 Number of primes of the form b^2 + 1 for b <= 10^n.

Original entry on oeis.org

5, 19, 112, 841, 6656, 54110, 456362, 3954181, 34900213, 312357934, 2826683630, 25814570672, 237542444180, 2199894223892
Offset: 1

Views

Author

Michel Lagneau, Feb 13 2012

Keywords

Comments

Conjecture: The number of primes of the form b^2 + 1 and less than n is asymptotic to 3*n/(4*log(n)).
Examples:
n = 10^3, a(n) = 112 and 3*10^3/(4*log(10^3)) = 108.573...;
n = 10^4, a(n) = 841 and 3*10^4/(4*log(10^4)) = 814.302...;
n = 10^10, a(n) = 312357934 and 3*10^10/(4*log(10^10)) = 325720861.42...
a(n) = A083844(2*n), but not always! The only known exception to this rule is at n = 1. - Arkadiusz Wesolowski, Jul 21 2012
From Jacques Tramu, Sep 14 2018: (Start)
In the table below, K = 0.686413 and pi(10^n) = A000720(10^n):
.
n a(n) K*pi(10^n)
== =========== ===========
1 5 3
2 19 17
3 112 115
4 841 843
5 6656 6584
6 54110 53882
7 456362 456175
8 3954181 3954737
9 34900213 34902408
10 312357934 312353959
11 2826683630 2826686358
12 25814570672 25814559712
(End)
For a comparison with the estimate that results from the Hardy and Littlewood Conjecture F, see A331942. - Hugo Pfoertner, Feb 03 2020

Examples

			a(2) = 19 because there are 19 primes of the form b^2 + 1 for b less than 10^2: 2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101 and 8837.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 264.

Crossrefs

Programs

  • Maple
    for n from 1 to 9 do : i:=0:for m from 1 to 10^n do:x:=m^2+1:if type(x,prime)=true then i:=i+1:else fi:od: printf ( "%d %d \n",n,i):od:
  • Mathematica
    1 + Accumulate@ Array[Count[Range[10^(# - 1) + 1, 10^#], ?(PrimeQ[#^2 + 1] &)] &, 7] (* _Michael De Vlieger, Sep 18 2018 *)
  • PARI
    a(n)=sum(n=1,10^n,ispseudoprime(n^2+1)) \\ Charles R Greathouse IV, Feb 13 2012
    
  • Python
    from sympy import isprime
    def A206709(n):
        c, b, b2, n10 = 0, 1, 2, 10**n
        while b <= n10:
            if isprime(b2):
                c += 1
            b += 1
            b2 += 2*b - 1
        return c # Chai Wah Wu, Sep 17 2018

Extensions

a(11)-a(12) from Arkadiusz Wesolowski, Jul 21 2012
a(13)-a(14) from Jinyuan Wang, Feb 24 2020

A215057 Number of primes of the form 1 + b^64 for 1 < b < 10^n.

Original entry on oeis.org

0, 0, 8, 92, 606, 4835, 41059, 354239, 3133668
Offset: 1

Views

Author

Henryk Dabrowski, Aug 01 2012

Keywords

Comments

Primes 1 + b^64 are a form of generalized Fermat primes.
It is conjectured that a(n) is asymptotic to 0.0616053*li(10^n)

Examples

			a(3) = 8 because the Fermat numbers F_6(b) where b<10^3 are prime only for b = 102, 162, 274, 300, 412, 562, 592, 728.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^64+1))

Extensions

a(8)-a(9) from Kellen Shenton, Aug 09 2020

A215058 Number of primes of the form 1 + b^128 for 1 < b < 10^n.

Original entry on oeis.org

0, 0, 7, 25, 242, 1933, 16080, 139921, 1234958
Offset: 1

Views

Author

Henryk Dabrowski, Aug 01 2012

Keywords

Comments

Primes 1 + b^128 are a form of generalized Fermat primes.
It is conjectured that a(n) is asymptotic to 0.0242888*li(10^n)

Examples

			a(3) = 7 because the generalized Fermat numbers F_7(b) where b<10^3 are prime only for b: 120, 190, 234, 506, 532, 548, 960.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^128+1))

Extensions

a(8)-a(9) from Kellen Shenton, Aug 10 2020

A215698 Number of primes of the form 1 + b^256 for 1 < b < 10^n.

Original entry on oeis.org

0, 0, 4, 30, 272, 2322
Offset: 1

Views

Author

Henryk Dabrowski, Aug 21 2012

Keywords

Comments

Primes 1 + b^256 are a form of generalized Fermat primes.
It is conjectured that a(n) is asymptotic to 0.0290422*li(10^n)

Examples

			a(3) = 4 because the generalized Fermat numbers F_8(b) where b<10^3 are prime only for b: 278, 614, 892, 898.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^256+1))

A215699 Number of primes of the form 1 + b^512 for 1 < b < 10^n.

Original entry on oeis.org

0, 1, 1, 28, 160, 1247
Offset: 1

Views

Author

Henryk Dabrowski, Aug 21 2012

Keywords

Comments

Primes 1 + b^512 are a form of generalized Fermat primes.
It is conjectured that a(n) is asymptotic to 0.0146271*li(10^n)

Examples

			a(3) = 1 because the generalized Fermat numbers F_9(b) where b<10^3 are prime only for b = 46.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^512+1))

A215700 Number of primes of the form 1 + b^1024 for 1 < b < 10^n.

Original entry on oeis.org

0, 0, 1, 14, 81, 578
Offset: 1

Views

Author

Henryk Dabrowski, Aug 21 2012

Keywords

Comments

Primes 1 + b^1024 are a form of generalized Fermat primes.
It is conjectured that a(n) is asymptotic to 0.00783139*li(10^n)

Examples

			a(3) = 1 because the generalized Fermat numbers F_10(b) where b<10^3 are prime only for b = 824.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^1024+1))

A215701 Number of primes of the form 1 + b^2048 for 1 < b < 10^n.

Original entry on oeis.org

0, 0, 1, 4, 40, 276
Offset: 1

Views

Author

Henryk Dabrowski, Aug 21 2012

Keywords

Comments

Primes 1 + b^2048 are a form of generalized Fermat primes.
It is conjectured that a(n) is asymptotic to 0.00352764*li(10^n)

Examples

			a(4) = 4 because the generalized Fermat numbers F_11(b) where b<10^4 are prime only for b = 150, 2558, 4650, 4772.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^2048+1))

A215702 Number of primes of the form 1 + b^4096 for 1 < b < 10^n.

Original entry on oeis.org

0, 0, 0, 2, 16, 170
Offset: 1

Views

Author

Henryk Dabrowski, Aug 21 2012

Keywords

Comments

Primes 1 + b^4096 are a form of generalized Fermat primes.
It is conjectured that a(n) is asymptotic to 0.00205697*li(10^n)

Examples

			a(4) = 2 because the generalized Fermat numbers F_12(b) where b<10^4 are prime only for b = 1534, 7316.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^4096+1))
Showing 1-10 of 14 results. Next