cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A331946 Factors k > 0 such that k*x^2 + 1 produces a new minimum of its Hardy-Littlewood constant.

Original entry on oeis.org

1, 5, 11, 17, 29, 41, 89, 101, 461, 521, 761, 941, 1091, 1361, 1889, 2141, 3449, 4289, 5381, 5561, 10709, 15461, 23201, 59309, 70769, 134741, 174929, 329969, 493349
Offset: 1

Views

Author

Hugo Pfoertner, Feb 10 2020

Keywords

Comments

a(30) > 600000.
See A331940 for more information on the Hardy-Littlewood constant. The polynomials described by this sequence are increasingly prime-avoiding.
The following table provides the minimum record values of C, together with the number of primes np generated by the polynomial P(x) = a(n)*x^2 + 1 for x <= r = 10^8 and the actual ratio np*(P(r)/r)/Integral_{x=2..P(r)} 1/log(x) dx.
a(n) C np C from ratio
1 1.37281 3954181 1.41606
5 0.66031 1816520 0.67979
11 0.56115 1512897 0.57810
17 0.52244 1392498 0.53816
.. ....... ...... .......
329969 0.20443 430342 0.20883
493349 0.20348 424719 0.20781

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

A331948 Nonsquare factors k > 0 such that k*x^2 - 1 produces a new minimum of its Hardy-Littlewood constant.

Original entry on oeis.org

2, 3, 7, 13, 19, 31, 79, 151, 211, 331, 499, 631, 751, 991, 1171, 2011, 2311, 2671, 3019, 3931, 4159, 4951, 5119, 6451, 7459, 10651, 18379, 32971, 48799, 61051, 78439, 84319, 162451, 199411, 230239, 257371, 404251, 462331, 529699, 584791, 640819
Offset: 1

Views

Author

Hugo Pfoertner, Feb 10 2020

Keywords

Comments

a(42) > 10^6.
See A331940 for more information on the Hardy-Littlewood constant. The polynomials described by this sequence are increasingly prime-avoiding.
The following table provides the minimum record values of C, together with the number of primes np generated by the polynomial P(x) = a(n)*x^2 - 1 for 1 <= x <= r = 10^8 and the actual ratio np*(P(r)/r)/Integral_{x=2..P(r)} 1/log(x) dx.
a(n) C np C from ratio
2 3.70011 10448345 3.81422
3 2.07514 5794128 2.13869
7 0.88360 2411224 0.91046
13 0.87451 2344299 0.89971
.. ....... ....... .......
584791 0.21378 445220 0.21860
640819 0.21229 439946 0.21641

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

A338477 Numbers k such that 398*k^2 - 1 is prime.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 22, 24, 25, 27, 28, 29, 33, 34, 37, 38, 43, 44, 46, 47, 51, 52, 54, 55, 58, 59, 60, 67, 68, 71, 73, 75, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 93, 94, 95, 96, 97, 100, 103, 106, 107, 108, 110, 112, 114, 116, 117, 119, 121, 124, 125, 128
Offset: 1

Views

Author

Robert Israel, Oct 29 2020

Keywords

Comments

There are 414 such primes for 1 <= x <= 1000, and 3280 for 1 <= x <= 10000.

Examples

			a(3)=4 is in the sequence because 398*4^2 - 1 = 6367 is prime.
		

Crossrefs

Cf. A338476.
Cf. A331947, where 398 is a term.

Programs

  • Maple
    select(t -> isprime(398*t^2-1), [$1..1000]);

Formula

a(n) = sqrt(A338476(n) + 1)/398.

A332707 Factors k > 2 such that the polynomial x^2 + k*x + 1 produces a new minimum of its Hardy-Littlewood constant.

Original entry on oeis.org

3, 4, 8, 20, 40, 230, 260, 680, 1910, 2120, 6670, 9710, 10310, 23500, 25220, 37990, 71800
Offset: 1

Views

Author

Hugo Pfoertner, Feb 20 2020

Keywords

Comments

a(18) > 100000.
See A331940 for more information on the Hardy-Littlewood constant. The polynomials described by this sequence are increasingly avoiding primes.
The following table provides the minimum values of the Hardy-Littlewood constant C, together with the number of primes np generated by the polynomial P(x) = x^2 + a(n)*x + 1 for 1 <= x <= r = 10^8 and the actual ratio np*(P(r)/r)/Integral_{x=2..P(r)} 1/log(x) dx.
a(n) C np C from ratio
3 3.54661 10220078 3.65998
4 1.38342 3982973 1.42637
8 0.91172 2627239 0.94086
20 0.76532 2204290 0.78939
..... ....... ....... .......
25220 0.39947 1151122 0.41224
37990 0.39945 1151126 0.41224

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

A332708 Factors k >= 0 such that the polynomial x^2 + k*x + 1 produces a record of its Hardy-Littlewood constant.

Original entry on oeis.org

1, 3, 21, 231, 879, 1011, 1089, 1659, 2751
Offset: 1

Views

Author

Hugo Pfoertner, Feb 20 2020

Keywords

Comments

a(10) > 80000.
See A331940 for more information on the Hardy-Littlewood constant. The polynomials described by this sequence have an increasing rate of generating primes.
The following table provides the record values of the Hardy-Littlewood constant C, together with the number of primes np generated by the polynomial P(x) = x^2 + a(n)*x + 1 for 1 <= x <= r = 10^8 and the actual ratio np*(P(r)/r)/Integral_{x=2..P(r)} 1/log(x) dx.
a(n) C np C from ratio
1 2.24147 6456835 2.31230
3 3.54661 10220078 3.65998
21 5.58679 16096923 5.76458
231 5.74156 16543757 5.92460
879 5.83722 16813676 6.02126
1011 5.92725 17073610 6.11435
1089 6.03701 17392675 6.22861
1659 6.04359 17413761 6.23617
2751 7.46622 21508374 7.70252

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

A338476 Primes of the form 398*x^2-1.

Original entry on oeis.org

397, 3581, 6367, 9949, 14327, 19501, 25471, 32237, 39799, 48157, 67261, 78007, 115021, 128951, 143677, 159199, 192631, 229247, 248749, 290141, 312031, 334717, 433421, 460087, 544861, 574711, 735901, 770527, 842167, 879181, 1035197, 1076191, 1160567, 1203949, 1338871, 1385437, 1432799, 1786621
Offset: 1

Views

Author

Robert Israel, Oct 29 2020

Keywords

Comments

There are 414 such primes for 1 <= x <= 1000, and 3280 for 1 <= x <= 10000.

Examples

			a(3) = 398*4^2-1 = 6367 is prime.
		

Crossrefs

Cf. A331947(11)=398, A338477.

Programs

  • Maple
    select(isprime, [seq(398*x^2-1,x=1..1000)]);
  • Mathematica
    Select[398 Range[100]^2-1,PrimeQ] (* Harvey P. Dale, Jan 13 2023 *)

Formula

a(n) = 398*A338477(n)^2-1.
Showing 1-6 of 6 results.