cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331942 a(n) = number of primes of the form P(k) = k^2 + 1 <= 10^n as predicted by the Hardy and Littlewood Conjecture F, rounded to nearest integer. The actual number of primes is A083844(n).

Original entry on oeis.org

1, 4, 9, 20, 48, 121, 317, 855, 2356, 6609, 18787, 53970, 156385, 456404, 1340088, 3955219, 11726332, 34903256, 104251560, 312353236, 938461459, 2826668497, 8533343468, 25814350227, 78239112814, 237541788793, 722354115787, 2199893807666, 6708847354653, 20485514756657
Offset: 1

Views

Author

Hugo Pfoertner, Feb 02 2020

Keywords

Comments

Comparison of actual and approximated number of primes < 10^n:
Limit
10^n
| A083844(n)
| | a(n)
| | | (a(n) - A083844(n))/A083844(n)
10^1 2 1 -0.50000
10^2 4 4 0.0
10^3 10 9 -0.10000
10^4 19 20 0.052632
10^5 51 48 -0.058824
10^6 112 121 0.080357
10^7 316 317 0.0031646
10^8 841 855 0.016647
10^9 2378 2356 -0.0092515
10^10 6656 6609 -0.0070613
10^11 18822 18787 -0.0018595
10^12 54110 53970 -0.0025873
10^13 156081 156385 0.0019477
10^14 456362 456404 9.2032E-5
10^15 1339875 1340088 0.00015897
10^16 3954181 3955219 0.00026251
10^17 11726896 11726332 -4.8095E-5
10^18 34900213 34903256 8.7191E-5
10^19 104248948 104251560 2.5055E-5
10^20 312357934 312353236 -1.5040E-5
10^21 938457801 938461459 3.8979E-6
10^22 2826683630 2826668497 -5.3536E-6
10^23 8533327397 8533343468 1.8833E-6
10^24 25814570672 25814350227 -8.5396E-6
10^25 78239402726 78239112814 -3.7054E-6
10^26 237542444180 237541788793 -2.7590E-6
10^27 722354138859 722354115787 -3.1940E-8
10^28 2199894223892 2199893807666 -1.8920E-7

Crossrefs

Programs

  • PARI
    C=0.68640673140912300455609634836350943408916655062787977896811707366392;
    x=1.0;S10=sqrt(10);for(k=1,30,x*=s10;print1(round(C*intnum(y=2,x,1/log(y))),", "))

Formula

b(m) = round (C * Integral_{x=2..m} 1/log(x) dx), with C ~= 0.6864067314..., the Hardy-Littlewood constant for k^2 + 1 (A331941); a(n) = b(10^(n/2)).