A331956 Triangle T(n,k) read by rows: number of rooted chains of length k in set partitions of n labeled points.
1, 0, 1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 14, 31, 18, 0, 1, 51, 255, 385, 180, 0, 1, 202, 2066, 6110, 6945, 2700, 0, 1, 876, 17549, 90839, 188510, 171045, 56700, 0, 1, 4139, 159615, 1364307, 4603620, 7314650, 5507460, 1587600
Offset: 0
Examples
Triangle T(n,k) begins: n\k | 0 1 2 3 4 5 6 7 ----+----------------------------------------- 0 | 1 1 | 0 1 2 | 0 1 1 3 | 0 1 4 3 4 | 0 1 14 31 18 5 | 0 1 51 255 385 180 6 | 0 1 202 2066 6110 6945 2700 7 | 0 1 876 17549 90839 188510 171045 56700 ... The T(3,2) = 4 in the lattice of set partitions of {1,2,3}: {{1},{2},{3}} < {{1,2},{3}}, {{1},{2},{3}} < {{1,3},{2}}, {{1},{2},{3}} < {{1},{2,3}}, {{1},{2},{3}} < {{1,2,3}}. Or, {{1,2,3}} > {{1,2},{3}}, {{1,2,3}} > {{1,3},{2}}, {{1,2,3}} > {{1},{2,3}}, {{1,2,3}} > {{1},{2},{3}}.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
- V. Murali, Equivalent finite fuzzy sets and Stirling numbers, Inf. Sci., 174 (2005), 251-263.
- R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1) (1991), 23-31.
Crossrefs
Programs
-
Maple
b:= proc(n, k, t) option remember; `if`(k<0 or k>n, 0, `if`(k=1 or {n, k}={0}, 1, add(b(v, k-1, 1)*Stirling2(n, v), v=k..n-t))) end: T:= (n, k)-> b(n, k, 0): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Feb 09 2020
-
Mathematica
b[n_, k_, t_] := b[n, k, t] = If[k < 0 || k > n, 0, If[k == 1 || Union@{n, k} == {0}, 1, Sum[b[v, k - 1, 1]*StirlingS2[n, v], {v, k, n - t}]]]; T[n_, k_] := b[n, k, 0]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten
-
PARI
b(n, k, t) = {if (k < 0, return(0)); if ((n==0) && (k==0), return (1)); if ((k==1) && (n>0), return(1)); sum(v = k, n - t, if (k==1, 1, b(v, k-1, 1))*stirling(n, v, 2));} T(n, k) = b(n, k, 0); matrix(8,8,n, k, T(n-1, k-1)) \\ to see the triangle \\ Michel Marcus, Feb 09 2020
Formula
T(0, 0) = 1, T(0, k) = 0 for k > 0 and T(n, 1) = 1 for n > 1.
T(n, k) = Sum_{i_(k-1)=k-1..n-1} (Sum_{i_(k-2)=k-2..i_(k-1) - 1} (... (Sum_{i_2=2..i_3 - 1} (Sum_{i_1=1..i_2 - 1} Stirling2(n,i_(k-1)) * Stirling2(i_(k-1),i_(k-2)) * ... * Stirling2(i_3,i_2) * Stirling2(i_2,i_1)))...)), where 2 <= k <= n.
Comments