cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331957 Number of rooted chains in set partitions of {1, 2, ..., n}.

Original entry on oeis.org

1, 1, 2, 8, 64, 872, 18024, 525520, 20541392, 1036555120, 65591856032, 5085891210864, 474213645013904, 52346708185187392, 6751386193135966464, 1005991884967386086400, 171500271138273300946720, 33167303833191421470542496, 7222314392966179538774364128, 1759036134944451206655721276256
Offset: 0

Views

Author

S. R. Kannan and Rajesh Kumar Mohapatra, Feb 02 2020

Keywords

Comments

Also the number of chains of Stirling numbers of the second kind such that the first term of the chains is either {{1}, {2}, ..., {n}} or {{1,2,...,n}}.
Number of rooted fuzzy equivalence matrices of order n.

Examples

			The a(3) = 8 in the lattice of set partitions of {1,2,3}:
  {{1},{2},{3}},
  {{1},{2},{3}} < {{1,2},{3}},
  {{1},{2},{3}} < {{1,3},{2}},
  {{1},{2},{3}} < {{1},{2,3}},
  {{1},{2},{3}} < {{1,2,3}},
  {{1},{2},{3}} < {{1,2},{3}} < {{1,2,3}},
  {{1},{2},{3}} < {{1,3},{2}} < {{1,2,3}},
  {{1},{2},{3}} < {{1},{2,3}} < {{1,2,3}}.
Or,
  {{1,2,3}},
  {{1,2,3}} > {{1,2},{3}},
  {{1,2,3}} > {{1,3},{2}},
  {{1,2,3}} > {{1},{2,3}},
  {{1,2,3}} > {{1},{2},{3}},
  {{1,2,3}} > {{1},{2,3}} > {{1},{2},{3}},
  {{1,2,3}} > {{2},{1,3}} > {{1},{2},{3}},
  {{1,2,3}} > {{3},{1,2}} > {{1},{2},{3}}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(k<0 or k>n, 0, `if`(k=1 or
          {n, k}={0}, 1, add(b(v, k-1, 1)*Stirling2(n, v), v=k..n-t)))
        end:
    a:= n-> add(b(n, k, 0), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 09 2020
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[k < 0 || k > n, 0, If[k == 1 || Union@{n, k} =={0}, 1, Sum[b[v, k - 1, 1]*StirlingS2[n, v], {v, k, n - t}]]];
    a[n_] := Sum[b[n, k, 0], {k, 0, n}];
    a /@ Range[0, 30]
  • PARI
    b(n, k, t) = {if (k < 0, return(0)); if ((n==0) && (k==0), return (1)); if ((k==1) && (n>0), return(1)); sum(v = k, n - t, if (k==1, 1, b(v, k-1, 1))*stirling(n, v, 2));}
    a(n) = sum(k=0, n, b(n, k, 0); ); \\ Michel Marcus, Feb 09 2020
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling as s
    from functools import cache
    @cache
    def a(n): return 1 + sum(s(n, k) * a(k) for k in range(1, n)) # David Radcliffe, Jul 01 2025

Formula

a(n) = Sum_{k=0..n} A331956(n,k).
Conjecture from Mikhail Kurkov, Jun 25 2025: (Start)
a(n) = R(n,0) where
R(0,0) = 1,
R(n,k) = (k+1) * Sum_{j=k..n-1} R(n-1,j) for 0 <= k < n,
R(n,n) = Sum_{j=0..n-1} R(n,j). (End)
a(n) ~ A086053 * n!^2 / (2^(n-1) * log(2)^n * n^(1 + log(2)/3)). - Vaclav Kotesovec, Jul 01 2025
a(n) = 1 + Sum_{k=1..n-1} Stirling2(n,k)*a(k). - Rajesh Kumar Mohapatra, Jul 01 2025

Extensions

More terms from Michel Marcus, Feb 08 2020