A331966 Number of lone-child-avoiding rooted semi-identity trees with n vertices.
1, 0, 1, 1, 2, 3, 5, 9, 16, 30, 55, 105, 200, 388, 754, 1483, 2923, 5807, 11575, 23190, 46608, 94043, 190287, 386214, 785831, 1602952, 3276845, 6712905, 13778079, 28330583, 58350582, 120370731, 248676129, 514459237, 1065696295, 2210302177, 4589599429, 9540623926
Offset: 1
Keywords
Examples
The a(1) = 1 through a(9) = 16 trees (empty column shown as dot): o . (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo) (oooooooo) (o(oo)) (o(ooo)) (o(oooo)) (o(ooooo)) (o(oooooo)) (oo(oo)) (oo(ooo)) (oo(oooo)) (oo(ooooo)) (ooo(oo)) (ooo(ooo)) (ooo(oooo)) (o(o(oo))) (oooo(oo)) (oooo(ooo)) ((oo)(ooo)) (ooooo(oo)) (o(o(ooo))) ((oo)(oooo)) (o(oo(oo))) (o(o(oooo))) (oo(o(oo))) (o(oo)(ooo)) (o(oo(ooo))) (o(ooo(oo))) (oo(o(ooo))) (oo(oo(oo))) (ooo(o(oo))) ((oo)(o(oo))) (o(o(o(oo))))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
Programs
-
Mathematica
ssb[n_]:=If[n==1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[ssb/@c]],UnsameQ@@DeleteCases[#,{}]&]]/@Rest[IntegerPartitions[n-1]]]; Table[Length[ssb[n]],{n,10}]
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} seq(n)={my(v=[0, 0]); for(n=2, n-1, v=concat(v, 1 + vecsum(WeighT(v)) - v[n])); v[1]=1; v} \\ Andrew Howroyd, Feb 09 2020
Extensions
Terms a(31) and beyond from Andrew Howroyd, Feb 09 2020
Comments