cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331987 a(n) = ((n + 1) - 9*(n + 1)^2 + 8*(n + 1)^3)/6.

Original entry on oeis.org

0, 5, 23, 62, 130, 235, 385, 588, 852, 1185, 1595, 2090, 2678, 3367, 4165, 5080, 6120, 7293, 8607, 10070, 11690, 13475, 15433, 17572, 19900, 22425, 25155, 28098, 31262, 34655, 38285, 42160, 46288, 50677, 55335, 60270, 65490, 71003, 76817, 82940, 89380, 96145
Offset: 0

Views

Author

Peter Luschny, Feb 19 2020

Keywords

Comments

The start values of the partial rows on the main diagonal of A332662 in the representation in the example section.
Apparently the sum of the hook lengths over the partitions of 2*n + 1 with exactly 2 parts (cf. A180681).

Crossrefs

Apparently a bisection of A049779 and of A024862.

Programs

  • Magma
    [n*(n+1)*(8*n+7)/6: n in [0..50]]; // G. C. Greubel, Apr 19 2023
    
  • Maple
    a := n -> ((n+1) - 9*(n+1)^2 + 8*(n+1)^3)/6: seq(a(n), n=0..41);
    gf := (x*(3*x + 5))/(x - 1)^4: ser := series(gf, x, 44):
    seq(coeff(ser, x, n), n=0..41);
  • Mathematica
    LinearRecurrence[{4,-6,4,-1}, {0,5,23,62}, 42]
    Table[(n-9n^2+8n^3)/6,{n,50}] (* Harvey P. Dale, Apr 11 2024 *)
  • SageMath
    def A331987(n): return n*(n+1)*(8*n+7)/6
    [A331987(n) for n in range(51)] # G. C. Greubel, Apr 19 2023

Formula

a(n) = [x^n] (x*(5 + 3*x)/(1 - x)^4).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = binomial(n+2, 3) + binomial(n+1, 3) + 2*(n+1)*binomial(n+1, 2).
From G. C. Greubel, Apr 19 2023: (Start)
a(n) = 3*binomial(n+1,1) - 11*binomial(n+2,2) + 8*binomial(n+3,3).
a(n) = n*binomial(8*n+8,2)/24.
a(n) = n*(n+1)*(8*n+7)/6.
E.g.f.: (1/6)*x*(30 + 39*x + 8*x^2)*exp(x). (End)