A331987 a(n) = ((n + 1) - 9*(n + 1)^2 + 8*(n + 1)^3)/6.
0, 5, 23, 62, 130, 235, 385, 588, 852, 1185, 1595, 2090, 2678, 3367, 4165, 5080, 6120, 7293, 8607, 10070, 11690, 13475, 15433, 17572, 19900, 22425, 25155, 28098, 31262, 34655, 38285, 42160, 46288, 50677, 55335, 60270, 65490, 71003, 76817, 82940, 89380, 96145
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n*(n+1)*(8*n+7)/6: n in [0..50]]; // G. C. Greubel, Apr 19 2023
-
Maple
a := n -> ((n+1) - 9*(n+1)^2 + 8*(n+1)^3)/6: seq(a(n), n=0..41); gf := (x*(3*x + 5))/(x - 1)^4: ser := series(gf, x, 44): seq(coeff(ser, x, n), n=0..41);
-
Mathematica
LinearRecurrence[{4,-6,4,-1}, {0,5,23,62}, 42] Table[(n-9n^2+8n^3)/6,{n,50}] (* Harvey P. Dale, Apr 11 2024 *)
-
SageMath
def A331987(n): return n*(n+1)*(8*n+7)/6 [A331987(n) for n in range(51)] # G. C. Greubel, Apr 19 2023
Formula
a(n) = [x^n] (x*(5 + 3*x)/(1 - x)^4).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = binomial(n+2, 3) + binomial(n+1, 3) + 2*(n+1)*binomial(n+1, 2).
From G. C. Greubel, Apr 19 2023: (Start)
a(n) = 3*binomial(n+1,1) - 11*binomial(n+2,2) + 8*binomial(n+3,3).
a(n) = n*binomial(8*n+8,2)/24.
a(n) = n*(n+1)*(8*n+7)/6.
E.g.f.: (1/6)*x*(30 + 39*x + 8*x^2)*exp(x). (End)
Comments