A331993 Number of semi-lone-child-avoiding rooted semi-identity trees with n unlabeled vertices.
1, 1, 1, 2, 3, 6, 11, 22, 43, 90, 185, 393, 835, 1802, 3904, 8540, 18756, 41463, 92022, 205179, 459086, 1030917, 2321949, 5245104, 11878750, 26967957, 61359917, 139902251, 319591669, 731385621, 1676573854, 3849288924, 8850674950, 20378544752, 46982414535
Offset: 1
Keywords
Examples
The a(1) = 1 through a(7) = 11 trees: o (o) (oo) (ooo) (oooo) (ooooo) (oooooo) (o(o)) (o(oo)) (o(ooo)) (o(oooo)) (oo(o)) (oo(oo)) (oo(ooo)) (ooo(o)) (ooo(oo)) ((o)(oo)) (oooo(o)) (o(o(o))) ((o)(ooo)) (o(o)(oo)) (o(o(oo))) (o(oo(o))) (oo(o(o))) ((o)(o(o)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Not requiring any lone-child-avoidance gives A306200.
Matula-Goebel numbers of these trees are A331994.
Lone-child-avoiding rooted identity trees are A000007.
Semi-lone-child-avoiding rooted trees are A331934.
Semi-lone-child-avoiding rooted identity trees are A331964.
Lone-child-avoiding rooted semi-identity trees are A331966.
Programs
-
Mathematica
sssb[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[sssb/@c]],UnsameQ@@DeleteCases[#,{}]&]]/@Rest[IntegerPartitions[n-1]]]; Table[Length[sssb[n]],{n,10}]
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, 1 + vecsum(WeighT(v)) - v[n])); v[1]=1; v} \\ Andrew Howroyd, Feb 09 2020
Extensions
Terms a(26) and beyond from Andrew Howroyd, Feb 09 2020
Comments