cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331993 Number of semi-lone-child-avoiding rooted semi-identity trees with n unlabeled vertices.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 22, 43, 90, 185, 393, 835, 1802, 3904, 8540, 18756, 41463, 92022, 205179, 459086, 1030917, 2321949, 5245104, 11878750, 26967957, 61359917, 139902251, 319591669, 731385621, 1676573854, 3849288924, 8850674950, 20378544752, 46982414535
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2020

Keywords

Comments

Semi-lone-child-avoiding means there are no vertices with exactly one child unless that child is an endpoint/leaf.
In a semi-identity tree, the non-leaf branches of any given vertex are distinct.

Examples

			The a(1) = 1 through a(7) = 11 trees:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)    (oooooo)
                (o(o))  (o(oo))  (o(ooo))   (o(oooo))
                        (oo(o))  (oo(oo))   (oo(ooo))
                                 (ooo(o))   (ooo(oo))
                                 ((o)(oo))  (oooo(o))
                                 (o(o(o)))  ((o)(ooo))
                                            (o(o)(oo))
                                            (o(o(oo)))
                                            (o(oo(o)))
                                            (oo(o(o)))
                                            ((o)(o(o)))
		

Crossrefs

Not requiring any lone-child-avoidance gives A306200.
The locally disjoint case is A324969 (essentially A000045).
Matula-Goebel numbers of these trees are A331994.
Lone-child-avoiding rooted identity trees are A000007.
Semi-lone-child-avoiding rooted trees are A331934.
Semi-lone-child-avoiding rooted identity trees are A331964.
Lone-child-avoiding rooted semi-identity trees are A331966.

Programs

  • Mathematica
    sssb[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[sssb/@c]],UnsameQ@@DeleteCases[#,{}]&]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[sssb[n]],{n,10}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, 1 + vecsum(WeighT(v)) - v[n])); v[1]=1; v} \\ Andrew Howroyd, Feb 09 2020

Extensions

Terms a(26) and beyond from Andrew Howroyd, Feb 09 2020