A332018 a(n) = A038502(A000265(n)) if n is even or n == 0 (mod 3), a(n) = A038502(A000265(5*n + 1)) otherwise.
1, 1, 1, 1, 13, 1, 1, 1, 1, 5, 7, 1, 11, 7, 5, 1, 43, 1, 1, 5, 7, 11, 29, 1, 7, 13, 1, 7, 73, 5, 13, 1, 11, 17, 11, 1, 31, 19, 13, 5, 103, 7, 1, 11, 5, 23, 59, 1, 41, 25, 17, 13, 133, 1, 23, 7, 19, 29, 37, 5, 17, 31, 7, 1, 163, 11, 7, 17, 23, 35, 89, 1, 61, 37
Offset: 1
Links
- J. Lesieutre, On a Generalization of the Collatz Conjecture, Research Science Institute, 2007.
- T. Oliveira e Silva, Computational verification of the 5x+1 and 7x+1 conjectures.
Programs
-
Magma
[Gcd(n,6) ne 1 select n/(Gcd(n, 2^n)*Gcd(n, 3^n)) else (5*n + 1)/(Gcd(5*n + 1, 2^(5*n + 1))*Gcd(5*n + 1, 3^(5*n + 1))):n in [1..75]]; // Marius A. Burtea, Feb 06 2020
-
Maple
A332018 := proc(n) option remember; if n mod 2 = 0 or n mod 3 = 0 then n/(2^padic[ordp](n, 2)*3^padic[ordp](n, 3)) else (5*n+1)/(2^padic[ordp](5*n+1, 2)*3^padic[ordp](5*n+1, 3)) fi end: seq(A332018(n), n=1..80);
-
Mathematica
b[n_]:=Denominator[2^n/n]; c[n_]:=Denominator[3^n/n]; Table[If[EvenQ[n]||(Mod[n, 3] == 0), c[b[n]], c[b[5*n + 1]]], {n, 1, 80}]
-
PARI
A332018(n)=my(val(x)=x/(2^valuation(x,2)*3^valuation(x,3))); val(if(n%2&&n%3,5*n+1,n))
Comments