cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332018 a(n) = A038502(A000265(n)) if n is even or n == 0 (mod 3), a(n) = A038502(A000265(5*n + 1)) otherwise.

Original entry on oeis.org

1, 1, 1, 1, 13, 1, 1, 1, 1, 5, 7, 1, 11, 7, 5, 1, 43, 1, 1, 5, 7, 11, 29, 1, 7, 13, 1, 7, 73, 5, 13, 1, 11, 17, 11, 1, 31, 19, 13, 5, 103, 7, 1, 11, 5, 23, 59, 1, 41, 25, 17, 13, 133, 1, 23, 7, 19, 29, 37, 5, 17, 31, 7, 1, 163, 11, 7, 17, 23, 35, 89, 1, 61, 37
Offset: 1

Views

Author

Davis Smith, Feb 04 2020

Keywords

Comments

a(n) is the greatest divisor of n coprime to 6 if n is not coprime to 6, otherwise a(n) is the greatest divisor of 5*n + 1 coprime to 6.
This is the '5x+1' map with the successive dividing steps removed. The 'Px+1' map with those steps removed: If x is divisible by any prime < P, then divide out those primes; otherwise multiply x by P, add 1, and then divide out the primes < P.
There is a conjecture which states that for any value of n > 0 there is a k such that a^{k}(n) = 1 or a^{k}(n) enters one of a finite number of periodic cycles, where a^{0}(n) = n and a^{k + 1}(n) = a(a^{k}(n)).

Crossrefs

Programs

  • Magma
    [Gcd(n,6) ne 1 select n/(Gcd(n, 2^n)*Gcd(n, 3^n)) else (5*n + 1)/(Gcd(5*n + 1, 2^(5*n + 1))*Gcd(5*n + 1, 3^(5*n + 1))):n in [1..75]]; // Marius A. Burtea, Feb 06 2020
  • Maple
    A332018 := proc(n) option remember;
    if n mod 2 = 0 or n mod 3 = 0 then n/(2^padic[ordp](n, 2)*3^padic[ordp](n, 3))
    else (5*n+1)/(2^padic[ordp](5*n+1, 2)*3^padic[ordp](5*n+1, 3)) fi end:
    seq(A332018(n), n=1..80);
  • Mathematica
    b[n_]:=Denominator[2^n/n]; c[n_]:=Denominator[3^n/n]; Table[If[EvenQ[n]||(Mod[n, 3] == 0), c[b[n]], c[b[5*n + 1]]], {n, 1, 80}]
  • PARI
    A332018(n)=my(val(x)=x/(2^valuation(x,2)*3^valuation(x,3))); val(if(n%2&&n%3,5*n+1,n))
    

Formula

a(n) = A038502(A000265(A133419(n))).
a(n) = n/(gcd(n, 2^n)*gcd(n, 3^n)) if n is not coprime to 6, a(n) = (5*n + 1)/(gcd(5*n + 1, 2^(5*n + 1))*gcd(5*n + 1, 3^(5*n + 1))) otherwise.