A332031 G.f.: Sum_{k>=1} k! * x^(k^2) / (1 - x^k).
1, 1, 1, 3, 1, 3, 1, 3, 7, 3, 1, 9, 1, 3, 7, 27, 1, 9, 1, 27, 7, 3, 1, 33, 121, 3, 7, 27, 1, 129, 1, 27, 7, 3, 121, 753, 1, 3, 7, 147, 1, 729, 1, 27, 127, 3, 1, 753, 5041, 123, 7, 27, 1, 729, 121, 5067, 7, 3, 1, 873, 1, 3, 5047, 40347, 121, 729, 1, 27, 7, 5163, 1, 41073, 1, 3, 127
Offset: 1
Examples
a(12) = 9 because we have [12], [7, 5], [6, 4, 2], [6, 2, 4], [5, 7], [4, 6, 2], [4, 2, 6], [2, 6, 4] and [2, 4, 6].
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
nmax = 75; CoefficientList[Series[Sum[k! x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
-
PARI
A332031(n) = sumdiv(n, d, (d<=(n/d)) * d!); \\ Antti Karttunen, Dec 15 2021
Formula
From Antti Karttunen, Dec 15 2021: (Start)
a(n) = Sum_{d|n, d <= n/d} d!.
a(2n-1) = A332032(2n-1) for all n >= 1.
(End)
Comments