A332051 Number of compositions of 2n where the multiplicity of the first part equals n.
1, 1, 3, 4, 15, 36, 126, 372, 1239, 3910, 12848, 41581, 136578, 447188, 1473342, 4855704, 16053831, 53138244, 176233968, 585202262, 1945964080, 6478043121, 21588979877, 72016891509, 240452892570, 803489258286, 2686964354376, 8991840800137, 30110638705890
Offset: 0
Keywords
Examples
a(0) = 1: the empty composition. a(1) = 1: 2. a(2) = 3: 22, 112, 121. a(3) = 4: 222, 1113, 1131, 1311. a(4) = 15: 2222, 11114, 11141, 11411, 14111, 111122, 111212, 111221, 112112, 112121, 112211, 121112, 121121, 121211, 122111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1882
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, x, add(expand( `if`(i=j, x, 1)*b(n-j, `if`(n `if`(n=0, 1, coeff(add(b(2*n-j, j), j=1..2*n), x, n)): seq(a(n), n=0..35);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, x, Sum[Expand[If[i == j, x, 1] b[n - j, If[n < i + j, 0, i]]], {j, 1, n}]]; a[n_] := If[n == 0, 1, Coefficient[Sum[b[2 n - j, j], {j, 1, 2 n}], x, n]]; a /@ Range[0, 35] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
Formula
a(n) = A331332(2n,n).
a(n) ~ c * d^n / sqrt(Pi*n), where d = 3.40869819984215108586487649733361214893... is the root of the equation 4 - 32*d - 8*d^2 + 5*d^3 = 0, and c = 0.34930509632919368540449993196290415079... is the root of the equation 5 - 4*c^2 - 592*c^4 + 2368*c^6 = 0. - Vaclav Kotesovec, Feb 08 2020
Recurrence: 5*(n-1)*n*(2294*n^5 - 31267*n^4 + 168064*n^3 - 445121*n^2 + 580494*n - 297864)*a(n) = (n-1)*(29822*n^6 - 415647*n^5 + 2327634*n^4 - 6668807*n^3 + 10238782*n^2 - 7910608*n + 2368800)*a(n-1) + 2*(27528*n^7 - 434848*n^6 + 2851985*n^5 - 10024036*n^4 + 20278349*n^3 - 23438626*n^2 + 14189888*n - 3420000)*a(n-2) - 2*(41292*n^7 - 647684*n^6 + 4218357*n^5 - 14743832*n^4 + 29759871*n^3 - 34533464*n^2 + 21199620*n - 5259600)*a(n-3) + 2*(n-4)*(2*n - 7)*(2294*n^5 - 19797*n^4 + 65936*n^3 - 105591*n^2 + 80846*n - 23400)*a(n-4). - Vaclav Kotesovec, Feb 08 2020