A332083 Three-column table read by rows giving triples of integers with x, y, z != 0 and y != 1 such that y^2 - y - x*z = 0, sorted by the absolute value of y with the negatives first, then by x in ascending order.
-2, -1, -1, -1, -1, -2, 1, -1, 2, 2, -1, 1, -6, -2, -1, -3, -2, -2, -2, -2, -3, -1, -2, -6, 1, -2, 6, 2, -2, 3, 3, -2, 2, 6, -2, 1, -2, 2, -1, -1, 2, -2, 1, 2, 2, 2, 2, 1, -12, -3, -1, -6, -3, -2, -4, -3, -3, -3, -3, -4, -2, -3, -6, -1, -3, -12, 1, -3, 12, 2, -3, 6, 3, -3, 4, 4, -3, 3, 6, -3, 2, 12, -3, 1
Offset: 1
Examples
Table begins: [ x, y, z] ------------- [-2, -1, -1]; [-1, -1, -2]; [ 1, -1, 2]; [ 2, -1, 1]; [-6, -2, -1]; [-3, -2, -2]; [-2, -2, -3]; [-1, -2, -6]; [ 1, -2, 6]; [ 2, -2, 3]; [ 3, -2, 2]; [ 6, -2, 1]; [-2, 2, -1]; [-1, 2, -2]; [ 1, 2, 2]; [ 2, 2, 1]; ... Examples of two rows that sum to [0, 1, 0] and ids and thetas are switched: [x1, y1, z1] + [x2, y2, z2] = [2, 2, 1] + [-2, -1, -1] = [0, 1, 0], f_1(a,b) + f_2(a,b) = (2a*b + 2(a+b) + 1) + (-2a*b - (a+b) - 1) = a + b; id_1 = -z1/y1 = -1/2, theta_1 = -y1/x1 = -1, id_2 = -z2/y2 = -1 = theta_1, theta_2 = -y2/x2 = -1/2 = id_1; id_1/theta_2 + id_2/theta_1 = (-1/2)/(-1/2) + (-1)/(-1) = 2. [x1, y1, z1] + [x2, y2, z2] = [15, 6, 2] + [-15, -5, -2] = [0, 1, 0], f_1(a,b) + f_2(a,b) = (15a*b + 6(a+b) + 2) + (-15a*b - 5(a+b) - 2) = a + b; id_1 = -z1/y1 = -1/3, theta_1 = -y1/x1 = -2/5, id_2 = -z2/y2 = -2/5 = theta_1, theta_2 = -y2/x2 = -1/3 = id_1; id_1/theta_2 + id_2/theta_1 = (-1/3)/(-1/3) + (-2/5)/(-2/5) = 2. Example of three rows that sum to a triple with y^2 - y - x*z = 0 and the rows pairwise sum to a row: [1, 7, 42] + [2, 8, 28] + [-3, -14, -70] = [0, 1, 0] and [1, 7, 42] + [2, 8, 28] = [3, 15, 70], another row; [1, 7, 42] + [-3, -14, -70] = [-2, -7, -28], another row; [2, 8, 28] + [-3, -14, -70] = [-1, -6, -42], another row.
Links
- David Lovler, Table of n, a(n) for n = 1..4368
- David Lovler, The first 3912 triples for y up to 60.
- David Lovler, Comments and examples
Crossrefs
Cf. A336013.
Programs
-
PARI
{ my(y=1); fordiv (y^2+y, x, print([-(y^2+y)/x, -y, -x]) ); fordiv (y^2+y, x, print([x, -y, (y^2+y)/x]) ); for (y = 2, 6, fordiv (y^2+y, x, print([-(y^2+y)/x, -y, -x]) ); fordiv (y^2+y, x, print([x, -y, (y^2+y)/x]) ); fordiv (y^2-y, x, print([-(y^2-y)/x, y, -x]) ); fordiv (y^2-y, x, print([x, y, (y^2-y)/x]) ) )} \\ David Lovler, Apr 01 2021
Formula
x = (y^2 - y)/z.
y = (1 +- sqrt(1 + 4*x*z))/2.
z = (y^2 - y)/x.
Comments