A336013 Three-column table read by rows giving triples of integers with x > 0, y > 1 and z > 0 such that y^2 - y - x*z = 0, sorted by y then by x.
1, 2, 2, 2, 2, 1, 1, 3, 6, 2, 3, 3, 3, 3, 2, 6, 3, 1, 1, 4, 12, 2, 4, 6, 3, 4, 4, 4, 4, 3, 6, 4, 2, 12, 4, 1, 1, 5, 20, 2, 5, 10, 4, 5, 5, 5, 5, 4, 10, 5, 2, 20, 5, 1, 1, 6, 30, 2, 6, 15, 3, 6, 10, 5, 6, 6, 6, 6, 5, 10, 6, 3, 15, 6, 2, 30, 6, 1
Offset: 1
A351986 Four-column table read by rows, giving quadruples of integers [w,x,y,z] such that y^2 - y - x*z = 0 and x^2 = w*y with w*y != 0 and y != 1, sorted by the absolute value of y with the negatives first, then by x in ascending order.
-4, -2, -1, -1, -1, -1, -1, -2, -1, 1, -1, 2, -4, 2, -1, 1, -18, -6, -2, -1, -2, -2, -2, -3, -2, 2, -2, 3, -18, 6, -2, 1, 2, -2, 2, -1, 2, 2, 2, 1, -48, -12, -3, -1, -12, -6, -3, -2, -3, -3, -3, -4, -3, 3, -3, 4, -12, 6, -3, 2, -48, 12, -3, 1, 12, -6, 3, -1, 3, -3, 3, -2, 3, 3, 3, 2, 12, 6, 3, 1
Offset: 1
Comments
When [w,x,y,z] is a row, f(a,b,c) = w*a*b*c + x*(a*b + a*c + b*c) + y*(a+b+c) + z is associative in the following sense. f((a,b,c),d,e) = f(a,f(b,c,d),e) = f(a,b,f(c,d,e)) for all a,b,c,d,e. f(a,b,c) is commutative because of its symmetry.
For each quadruple, the corresponding f(a,b,c) has a unique zero element (call it theta), meaning f(a,b,theta) = f(a,theta,b) = f(theta,a,b) = theta for all a,b. Theta = -y/x = - x/w. f(a,b,c) also has not one but two identity elements (id_1 and id_2), meaning f(a,id_1,id_1) = f(id_1,a,id_1) = f(id_1,id_1,a) = a for all a and f(a,id_2,id_2) = f(id_2,a,id_2) = f(id_2,id_2,a) = a for all a. Id = (-y +- sqrt(y))/x = theta +- sqrt(y)/x. Thus theta = (id_1 + id_2)/2.
The identity elements and theta are integers when y is a square and x divides sqrt(y).
Examples
Table begins: [ w, x, y, z] ------------------- [ -4, -2, -1, -1]; [ -1, -1, -1, -2]; [ -1, 1, -1, 2]; [ -4, 2, -1, 1]; [-18, -6, -2, -1]; [ -2, -2, -2, -3]; [ -2, 2, -2, 3]; [-18, 6, -2, 1]; [ 2, -2, 2, -1]; [ 2, 2, 2, 1]; [-48, -12, -3, -1]; [-12, -6, -3, -2]; [ -3, -3, -3, -4]; [ -3, 3, -3, 4]; [-12, 6, -3, 2]; [-48, 12, -3, 1]; [ 12, -6, 3, -1]; [ 3, -3, 3, -2]; [ 3, 3, 3, 2]; [ 12, 6, 3, 1]; ...
Links
- David Lovler, Table of n, a(n) for n = 1..10792
- David Lovler, The first 2698 quadruples for y up to 100.
Programs
-
PARI
{ my(y=1); fordiv (y^2+y, x, print([-((y^2+y)/x)^2/y, -(y^2+y)/x, -y, -x]) ); fordiv (y^2+y, x, print([-(x^2/y), x, -y, (y^2+y)/x]) ); for (y = 2, 6, fordiv (y^2+y, x, if(type(w = -(((y^2+y)/x)^2)/y)=="t_INT", print([w, -(y^2+y)/x, -y, -x]) )); fordiv (y^2+y, x, if(type(w = -x^2/y)=="t_INT", print([w, x, -y, (y^2+y)/x]) )); fordiv (y^2-y, x, if(type(w = (((y^2-y)/x)^2)/y)=="t_INT", print([w, -(y^2-y)/x, y, -x]) )); fordiv (y^2-y, x, if(type(w = x^2/y)=="t_INT", print([w, x, y, (y^2-y)/x]) )) )}
Comments
Examples
Links
Crossrefs
Programs
PARI
Formula
Extensions