A332086 a(n) = pi(prime(n) + n) - n, where pi is the prime counting function.
1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 3, 3, 4, 4, 4, 4, 3, 4, 4, 6, 5, 5, 4, 4, 4, 4, 6, 6, 6, 6, 7, 6, 7, 8, 7, 7, 6, 6, 8, 7, 8, 7, 8, 10, 9, 9, 10, 9, 9, 8, 9, 10, 9, 8, 8, 8, 7, 9, 10, 10, 9, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13
Offset: 1
Keywords
Examples
a(1) = pi(p_1 + 1) - 1 = pi(2 + 1) - 1 = 2 - 1 = 1; a(2) = pi(p_2 + 2) - 2 = pi(3 + 2) - 2 = 3 - 2 = 1; a(6) = pi(p_6 + 6) - 6 = pi(13 + 6) - 6 = 8 - 6 = 2; a(80) = pi(p_80 + 80) - 80 = pi(409 + 80) - 80 = 93 - 80 = 13.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Ya-Ping Lu and Shu-Fang Deng, An upper bound for the prime gap, arXiv:2007.15282 [math.GM], 2020.
Programs
-
Maple
f:= n -> numtheory:-pi(ithprime(n)+n)-n: map(f, [$1..100]); # Robert Israel, Sep 08 2020
-
Mathematica
a[n_] := PrimePi[Prime[n] + n] - n; Array[a, 100] (* Amiram Eldar, Aug 23 2020 *)
-
PARI
a(n) = primepi(prime(n) + n) - n; \\ Michel Marcus, Aug 23 2020
-
Python
from sympy import prime, primepi for n in range(1, 1001): a = primepi(prime(n) + n) - n print(a)
Formula
a(n) = pi(prime(n) + n) - n.
Extensions
Name edited by Michel Marcus, Sep 02 2020
Comments