A332126 a(n) = 2*(10^(2n+1)-1)/9 + 4*10^n.
6, 262, 22622, 2226222, 222262222, 22222622222, 2222226222222, 222222262222222, 22222222622222222, 2222222226222222222, 222222222262222222222, 22222222222622222222222, 2222222222226222222222222, 222222222222262222222222222, 22222222222222622222222222222, 2222222222222226222222222222222
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Maple
A332126 := n -> 2*(10^(2*n+1)-1)/9+4*10^n;
-
Mathematica
Array[2 (10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0] Table[FromDigits[Join[PadRight[{},n,2],{6},PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{6,262,22622},20] (* Harvey P. Dale, Oct 17 2021 *)
-
PARI
apply( {A332126(n)=10^(n*2+1)\9*2+4*10^n}, [0..15])
-
Python
def A332126(n): return 10**(n*2+1)//9*2+4*10**n
Formula
G.f.: (6 - 404*x + 200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: 2*exp(x)*(10*exp(99*x) + 18*exp(9*x) - 1)/9. - Stefano Spezia, Jul 13 2024