A332141 a(n) = 4*(10^(2*n+1)-1)/9 - 3*10^n.
1, 414, 44144, 4441444, 444414444, 44444144444, 4444441444444, 444444414444444, 44444444144444444, 4444444441444444444, 444444444414444444444, 44444444444144444444444, 4444444444441444444444444, 444444444444414444444444444, 44444444444444144444444444444, 4444444444444441444444444444444
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Maple
A332141 := n -> 4*(10^(2*n+1)-1)/9-3*10^n;
-
Mathematica
Array[4 (10^(2 # + 1)-1)/9 - 3*10^# &, 15, 0] LinearRecurrence[{111,-1110,1000},{1,414,44144},20] (* or *) Table[ FromDigits[Join[PadRight[{},n,4],{1},PadRight[{},n,4]]],{n,0,20}](* Harvey P. Dale, Aug 17 2020 *)
-
PARI
apply( {A332141(n)=10^(n*2+1)\9*4-3*10^n}, [0..15])
-
Python
def A332141(n): return 10**(n*2+1)//9*4-3*10**n