A332140
a(n) = 4*(10^(2n+1)-1)/9 - 4*10^n.
Original entry on oeis.org
0, 404, 44044, 4440444, 444404444, 44444044444, 4444440444444, 444444404444444, 44444444044444444, 4444444440444444444, 444444444404444444444, 44444444444044444444444, 4444444444440444444444444, 444444444444404444444444444, 44444444444444044444444444444, 4444444444444440444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332141 ..
A332149 (variants with different middle digit 1, ..., 9).
-
A332140 := n -> 4*((10^(2*n+1)-1)/9-10^n);
-
Array[4 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
LinearRecurrence[{111,-1110,1000},{0,404,44044},20] (* Harvey P. Dale, Jul 06 2021 *)
-
apply( {A332140(n)=(10^(n*2+1)\9-10^n)*4}, [0..15])
-
def A332140(n): return (10**(n*2+1)//9-10**n)*4
A332141
a(n) = 4*(10^(2*n+1)-1)/9 - 3*10^n.
Original entry on oeis.org
1, 414, 44144, 4441444, 444414444, 44444144444, 4444441444444, 444444414444444, 44444444144444444, 4444444441444444444, 444444444414444444444, 44444444444144444444444, 4444444444441444444444444, 444444444444414444444444444, 44444444444444144444444444444, 4444444444444441444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332121 ..
A332191 (variants with different repeated digit 2, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332141 := n -> 4*(10^(2*n+1)-1)/9-3*10^n;
-
Array[4 (10^(2 # + 1)-1)/9 - 3*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{1,414,44144},20] (* or *) Table[ FromDigits[Join[PadRight[{},n,4],{1},PadRight[{},n,4]]],{n,0,20}](* Harvey P. Dale, Aug 17 2020 *)
-
apply( {A332141(n)=10^(n*2+1)\9*4-3*10^n}, [0..15])
-
def A332141(n): return 10**(n*2+1)//9*4-3*10**n
A332143
a(n) = 4*(10^(2*n+1)-1)/9 - 10^n.
Original entry on oeis.org
3, 434, 44344, 4443444, 444434444, 44444344444, 4444443444444, 444444434444444, 44444444344444444, 4444444443444444444, 444444444434444444444, 44444444444344444444444, 4444444444443444444444444, 444444444444434444444444444, 44444444444444344444444444444, 4444444444444443444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332143 := n -> 4*(10^(2*n+1)-1)/9-10^n;
-
Array[4 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
-
apply( {A332143(n)=10^(n*2+1)\9*4-10^n}, [0..15])
-
def A332143(n): return 10**(n*2+1)//9*4-10**n
A332148
a(n) = 4*(10^(2*n+1)-1)/9 + 4*10^n.
Original entry on oeis.org
8, 484, 44844, 4448444, 444484444, 44444844444, 4444448444444, 444444484444444, 44444444844444444, 4444444448444444444, 444444444484444444444, 44444444444844444444444, 4444444444448444444444444, 444444444444484444444444444, 44444444444444844444444444444, 4444444444444448444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332148 := n -> 4*((10^(2*n+1)-1)/9+10^n);
-
Array[4 ((10^(2 # + 1)-1)/9 + 10^#) &, 15, 0]
-
apply( {A332148(n)=(10^(n*2+1)\9+10^n)*4}, [0..15])
-
def A332148(n): return (10**(n*2+1)//9+10**n)*4
A332142
a(n) = 4*(10^(2*n+1)-1)/9 - 2*10^n.
Original entry on oeis.org
2, 424, 44244, 4442444, 444424444, 44444244444, 4444442444444, 444444424444444, 44444444244444444, 4444444442444444444, 444444444424444444444, 44444444444244444444444, 4444444444442444444444444, 444444444444424444444444444, 44444444444444244444444444444, 4444444444444442444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332112 ..
A332192 (variants with different repeated digit 1, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332142 := n -> 4*(10^(2*n+1)-1)/9-2*10^n;
-
Array[4 (10^(2 # + 1)-1)/9 - 2*10^# &, 15, 0]
-
apply( {A332142(n)=10^(n*2+1)\9*4-2*10^n}, [0..15])
-
def A332142(n): return 10**(n*2+1)//9*4-2*10**n
A332145
a(n) = 4*(10^(2*n+1)-1)/9 + 10^n.
Original entry on oeis.org
5, 454, 44544, 4445444, 444454444, 44444544444, 4444445444444, 444444454444444, 44444444544444444, 4444444445444444444, 444444444454444444444, 44444444444544444444444, 4444444444445444444444444, 444444444444454444444444444, 44444444444444544444444444444, 4444444444444445444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332115 ..
A332195 (variants with different repeated digit 1, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332145 := n -> 4*(10^(2*n+1)-1)/9+10^n;
-
Array[4 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332145(n)=10^(n*2+1)\9*4+10^n}, [0..15])
-
def A332145(n): return 10**(n*2+1)//9*4+10**n
A332146
a(n) = 4*(10^(2*n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
6, 464, 44644, 4446444, 444464444, 44444644444, 4444446444444, 444444464444444, 44444444644444444, 4444444446444444444, 444444444464444444444, 44444444444644444444444, 4444444444446444444444444, 444444444444464444444444444, 44444444444444644444444444444, 4444444444444446444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332116 ..
A332196 (variants with different repeated digit 2, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332146 := n -> 4*(10^(2*n+1)-1)/9+2*10^n;
-
Array[4 (10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
-
apply( {A332146(n)=10^(n*2+1)\9*4+2*10^n}, [0..15])
-
def A332146(n): return 10**(n*2+1)//9*4+2*10**n
A332147
a(n) = 4*(10^(2*n+1)-1)/9 + 3*10^n.
Original entry on oeis.org
7, 474, 44744, 4447444, 444474444, 44444744444, 4444447444444, 444444474444444, 44444444744444444, 4444444447444444444, 444444444474444444444, 44444444444744444444444, 4444444444447444444444444, 444444444444474444444444444, 44444444444444744444444444444, 4444444444444447444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332117 ..
A332197 (variants with different repeated digit 1, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332147 := n -> 4*(10^(2*n+1)-1)/9+3*10^n;
-
Array[4 (10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{7,474,44744},20] (* Harvey P. Dale, Mar 08 2022 *)
-
apply( {A332147(n)=10^(n*2+1)\9*4+3*10^n}, [0..15])
-
def A332147(n): return 10**(n*2+1)//9*4+3*10**n
Showing 1-8 of 8 results.