A332193 a(n) = 10^(2n+1) - 1 - 6*10^n.
3, 939, 99399, 9993999, 999939999, 99999399999, 9999993999999, 999999939999999, 99999999399999999, 9999999993999999999, 999999999939999999999, 99999999999399999999999, 9999999999993999999999999, 999999999999939999999999999, 99999999999999399999999999999, 9999999999999993999999999999999
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Maple
A332193 := n -> 10^(n*2+1)-1-6*10^n;
-
Mathematica
Array[ 10^(2 # + 1) - 1 - 6*10^# &, 15, 0] LinearRecurrence[{111,-1110,1000},{3,939,99399},20] (* Harvey P. Dale, Jan 19 2024 *)
-
PARI
apply( {A332193(n)=10^(n*2+1)-1-6*10^n}, [0..15])
-
Python
def A332193(n): return 10**(n*2+1)-1-6*10^n