A332113
a(n) = (10^(2n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
3, 131, 11311, 1113111, 111131111, 11111311111, 1111113111111, 111111131111111, 11111111311111111, 1111111113111111111, 111111111131111111111, 11111111111311111111111, 1111111111113111111111111, 111111111111131111111111111, 11111111111111311111111111111, 1111111111111113111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)3(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11311...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332123 ..
A332193 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332113 := n -> (10^(2*n+1)-1)/9+2*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
-
apply( {A332113(n)=10^(n*2+1)\9+2*10^n}, [0..15])
-
def A332113(n): return 10**(n*2+1)//9+2*10**n
A332123
a(n) = 2*(10^(2n+1)-1)/9 + 10^n.
Original entry on oeis.org
3, 232, 22322, 2223222, 222232222, 22222322222, 2222223222222, 222222232222222, 22222222322222222, 2222222223222222222, 222222222232222222222, 22222222222322222222222, 2222222222223222222222222, 222222222222232222222222222, 22222222222222322222222222222, 2222222222222223222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332123 := n -> 2*(10^(2*n+1)-1)/9+10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332123(n)=10^(n*2+1)\9*2+10^n}, [0..15])
-
def A332123(n): return 10**(n*2+1)//9*2+10**n
A332143
a(n) = 4*(10^(2*n+1)-1)/9 - 10^n.
Original entry on oeis.org
3, 434, 44344, 4443444, 444434444, 44444344444, 4444443444444, 444444434444444, 44444444344444444, 4444444443444444444, 444444444434444444444, 44444444444344444444444, 4444444444443444444444444, 444444444444434444444444444, 44444444444444344444444444444, 4444444444444443444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332143 := n -> 4*(10^(2*n+1)-1)/9-10^n;
-
Array[4 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
-
apply( {A332143(n)=10^(n*2+1)\9*4-10^n}, [0..15])
-
def A332143(n): return 10**(n*2+1)//9*4-10**n
A332183
a(n) = 8*(10^(2n+1)-1)/9 - 5*10^n.
Original entry on oeis.org
3, 838, 88388, 8883888, 888838888, 88888388888, 8888883888888, 888888838888888, 88888888388888888, 8888888883888888888, 888888888838888888888, 88888888888388888888888, 8888888888883888888888888, 888888888888838888888888888, 88888888888888388888888888888, 8888888888888883888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
-
A332183 := n -> 8*(10^(2*n+1)-1)/9-5*10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 5*10^# &, 15, 0]
-
apply( {A332183(n)=10^(n*2+1)\9*8-5*10^n}, [0..15])
-
def A332183(n): return 10**(n*2+1)//9*8-5*10**n
A332153
a(n) = 5*(10^(2*n+1)-1)/9 - 2*10^n.
Original entry on oeis.org
3, 535, 55355, 5553555, 555535555, 55555355555, 5555553555555, 555555535555555, 55555555355555555, 5555555553555555555, 555555555535555555555, 55555555555355555555555, 5555555555553555555555555, 555555555555535555555555555, 55555555555555355555555555555, 5555555555555553555555555555555
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332150 ..
A332159 (variants with different middle digit 0, ..., 9).
-
A332153 := n -> 5*(10^(2*n+1)-1)/9-2*10^n;
-
Array[5 (10^(2 # + 1)-1)/9 - 2*10^# &, 15, 0]
-
apply( {A332153(n)=10^(n*2+1)\9*5-2*10^n}, [0..15])
-
def A332153(n): return 10**(n*2+1)//9*5-2*10**n
A332163
a(n) = 6*(10^(2*n+1)-1)/9 - 3*10^n.
Original entry on oeis.org
3, 636, 66366, 6663666, 666636666, 66666366666, 6666663666666, 666666636666666, 66666666366666666, 6666666663666666666, 666666666636666666666, 66666666666366666666666, 6666666666663666666666666, 666666666666636666666666666, 66666666666666366666666666666, 6666666666666663666666666666666
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332160 ..
A332169 (variants with different middle digit 0, ..., 9).
-
A332163 := n -> 6*(10^(2*n+1)-1)/9-3*10^n;
-
Array[6 (10^(2 # + 1)-1)/9 - 3*10^# &, 15, 0]
-
apply( {A332163(n)=10^(n*2+1)\9*6-3*10^n}, [0..15])
-
def A332163(n): return 10**(n*2+1)//9*6-3*10**n
Showing 1-6 of 6 results.
Comments