A332112
a(n) = (10^(2n+1)-1)/9 + 10^n.
Original entry on oeis.org
2, 121, 11211, 1112111, 111121111, 11111211111, 1111112111111, 111111121111111, 11111111211111111, 1111111112111111111, 111111111121111111111, 11111111111211111111111, 1111111111112111111111111, 111111111111121111111111111, 11111111111111211111111111111, 1111111111111112111111111111111
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332132 ..
A332192 (variants with different repeated digit 3, ..., 9).
Cf.
A332113 ..
A332119 (variants with different middle digit 3, ..., 9).
Cf.
A331860 &
A331861 (indices of primes in non-palindromic variants).
-
A332112 := n -> (10^(2*n+1)-1)/9+10^n;
-
Array[ (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332112(n)=10^(n*2+1)\9*1+10^n}, [0..15])
-
def A332112(n): return 10**(n*2+1)//9+10**n
A332139
a(n) = (10^(2*n+1)-1)/3 + 6*10^n.
Original entry on oeis.org
9, 393, 33933, 3339333, 333393333, 33333933333, 3333339333333, 333333393333333, 33333333933333333, 3333333339333333333, 333333333393333333333, 33333333333933333333333, 3333333333339333333333333, 333333333333393333333333333, 33333333333333933333333333333, 3333333333333339333333333333333
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332129 ..
A332189 (variants with different repeated digit 2, ..., 8).
Cf.
A332130 ..
A332138 (variants with different middle digit 0, ..., 8).
-
A332139 := n -> (10^(2*n+1)-1)/3+6*10^n;
-
Array[ (10^(2 # + 1)-1)/3 + 6*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{9,393,33933},20] (* Harvey P. Dale, Sep 17 2020 *)
-
apply( {A332139(n)=10^(n*2+1)\3+6*10^n}, [0..15])
-
def A332139(n): return 10**(n*2+1)//3+6*10**n
A332193
a(n) = 10^(2n+1) - 1 - 6*10^n.
Original entry on oeis.org
3, 939, 99399, 9993999, 999939999, 99999399999, 9999993999999, 999999939999999, 99999999399999999, 9999999993999999999, 999999999939999999999, 99999999999399999999999, 9999999999993999999999999, 999999999999939999999999999, 99999999999999399999999999999, 9999999999999993999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332113 ..
A332183 (variants with different repeated digit 1, ..., 8).
-
A332193 := n -> 10^(n*2+1)-1-6*10^n;
-
Array[ 10^(2 # + 1) - 1 - 6*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{3,939,99399},20] (* Harvey P. Dale, Jan 19 2024 *)
-
apply( {A332193(n)=10^(n*2+1)-1-6*10^n}, [0..15])
-
def A332193(n): return 10**(n*2+1)-1-6*10^n
A332123
a(n) = 2*(10^(2n+1)-1)/9 + 10^n.
Original entry on oeis.org
3, 232, 22322, 2223222, 222232222, 22222322222, 2222223222222, 222222232222222, 22222222322222222, 2222222223222222222, 222222222232222222222, 22222222222322222222222, 2222222222223222222222222, 222222222222232222222222222, 22222222222222322222222222222, 2222222222222223222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332123 := n -> 2*(10^(2*n+1)-1)/9+10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332123(n)=10^(n*2+1)\9*2+10^n}, [0..15])
-
def A332123(n): return 10**(n*2+1)//9*2+10**n
A077779
Numbers k such that (10^k - 1)/9 + 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 5, 39, 195, 19637
Offset: 1
5 is a term because (10^5 - 1)/9 + 2*10^2 = 11311.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
See
A332113 for the (prime and composite) near-repunit palindromes 1..131..1.
-
Do[ If[ PrimeQ[(10^n + 18*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 20000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A332126
a(n) = 2*(10^(2n+1)-1)/9 + 4*10^n.
Original entry on oeis.org
6, 262, 22622, 2226222, 222262222, 22222622222, 2222226222222, 222222262222222, 22222222622222222, 2222222226222222222, 222222222262222222222, 22222222222622222222222, 2222222222226222222222222, 222222222222262222222222222, 22222222222222622222222222222, 2222222222222226222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332116 ..
A332196 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332126 := n -> 2*(10^(2*n+1)-1)/9+4*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,2],{6},PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{6,262,22622},20] (* Harvey P. Dale, Oct 17 2021 *)
-
apply( {A332126(n)=10^(n*2+1)\9*2+4*10^n}, [0..15])
-
def A332126(n): return 10**(n*2+1)//9*2+4*10**n
A332143
a(n) = 4*(10^(2*n+1)-1)/9 - 10^n.
Original entry on oeis.org
3, 434, 44344, 4443444, 444434444, 44444344444, 4444443444444, 444444434444444, 44444444344444444, 4444444443444444444, 444444444434444444444, 44444444444344444444444, 4444444444443444444444444, 444444444444434444444444444, 44444444444444344444444444444, 4444444444444443444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332143 := n -> 4*(10^(2*n+1)-1)/9-10^n;
-
Array[4 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
-
apply( {A332143(n)=10^(n*2+1)\9*4-10^n}, [0..15])
-
def A332143(n): return 10**(n*2+1)//9*4-10**n
A332183
a(n) = 8*(10^(2n+1)-1)/9 - 5*10^n.
Original entry on oeis.org
3, 838, 88388, 8883888, 888838888, 88888388888, 8888883888888, 888888838888888, 88888888388888888, 8888888883888888888, 888888888838888888888, 88888888888388888888888, 8888888888883888888888888, 888888888888838888888888888, 88888888888888388888888888888, 8888888888888883888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
-
A332183 := n -> 8*(10^(2*n+1)-1)/9-5*10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 5*10^# &, 15, 0]
-
apply( {A332183(n)=10^(n*2+1)\9*8-5*10^n}, [0..15])
-
def A332183(n): return 10**(n*2+1)//9*8-5*10**n
A332153
a(n) = 5*(10^(2*n+1)-1)/9 - 2*10^n.
Original entry on oeis.org
3, 535, 55355, 5553555, 555535555, 55555355555, 5555553555555, 555555535555555, 55555555355555555, 5555555553555555555, 555555555535555555555, 55555555555355555555555, 5555555555553555555555555, 555555555555535555555555555, 55555555555555355555555555555, 5555555555555553555555555555555
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332150 ..
A332159 (variants with different middle digit 0, ..., 9).
-
A332153 := n -> 5*(10^(2*n+1)-1)/9-2*10^n;
-
Array[5 (10^(2 # + 1)-1)/9 - 2*10^# &, 15, 0]
-
apply( {A332153(n)=10^(n*2+1)\9*5-2*10^n}, [0..15])
-
def A332153(n): return 10**(n*2+1)//9*5-2*10**n
A332163
a(n) = 6*(10^(2*n+1)-1)/9 - 3*10^n.
Original entry on oeis.org
3, 636, 66366, 6663666, 666636666, 66666366666, 6666663666666, 666666636666666, 66666666366666666, 6666666663666666666, 666666666636666666666, 66666666666366666666666, 6666666666663666666666666, 666666666666636666666666666, 66666666666666366666666666666, 6666666666666663666666666666666
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332160 ..
A332169 (variants with different middle digit 0, ..., 9).
-
A332163 := n -> 6*(10^(2*n+1)-1)/9-3*10^n;
-
Array[6 (10^(2 # + 1)-1)/9 - 3*10^# &, 15, 0]
-
apply( {A332163(n)=10^(n*2+1)\9*6-3*10^n}, [0..15])
-
def A332163(n): return 10**(n*2+1)//9*6-3*10**n
Showing 1-10 of 10 results.
Comments