A332119
a(n) = (10^(2n+1)-1)/9 + 8*10^n.
Original entry on oeis.org
9, 191, 11911, 1119111, 111191111, 11111911111, 1111119111111, 111111191111111, 11111111911111111, 1111111119111111111, 111111111191111111111, 11111111111911111111111, 1111111111119111111111111, 111111111111191111111111111, 11111111111111911111111111111, 1111111111111119111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)9(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11911...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332129 ..
A332189 (variants with different repeated digit 2, ..., 8).
Cf.
A332112 ..
A332118 (variants with different middle digit 2, ..., 8).
-
A332119 := n -> (10^(2*n+1)-1)/9+8*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 8*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,1],{9},PadRight[{},n,1]]],{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{9,191,11911},20] (* Harvey P. Dale, Mar 30 2024 *)
-
apply( {A332119(n)=10^(n*2+1)\9+8*10^n}, [0..15])
-
def A332119(n): return 10**(n*2+1)//9+8*10**n
A332113
a(n) = (10^(2n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
3, 131, 11311, 1113111, 111131111, 11111311111, 1111113111111, 111111131111111, 11111111311111111, 1111111113111111111, 111111111131111111111, 11111111111311111111111, 1111111111113111111111111, 111111111111131111111111111, 11111111111111311111111111111, 1111111111111113111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)3(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11311...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332123 ..
A332193 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332113 := n -> (10^(2*n+1)-1)/9+2*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
-
apply( {A332113(n)=10^(n*2+1)\9+2*10^n}, [0..15])
-
def A332113(n): return 10**(n*2+1)//9+2*10**n
A332117
a(n) = (10^(2n+1)-1)/9 + 6*10^n.
Original entry on oeis.org
7, 171, 11711, 1117111, 111171111, 11111711111, 1111117111111, 111111171111111, 11111111711111111, 1111111117111111111, 111111111171111111111, 11111111111711111111111, 1111111111117111111111111, 111111111111171111111111111, 11111111111111711111111111111, 1111111111111117111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)7(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11711...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332127 ..
A332197 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332117 := n -> (10^(2*n+1)-1)/9+6*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 6*10^# &, 15, 0]
-
apply( {A332117(n)=10^(n*2+1)\9+6*10^n}, [0..15])
-
def A332117(n): return 10**(n*2+1)//9+6*10**n
A332118
a(n) = (10^(2n+1) - 1)/9 + 7*10^n.
Original entry on oeis.org
8, 181, 11811, 1118111, 111181111, 11111811111, 1111118111111, 111111181111111, 11111111811111111, 1111111118111111111, 111111111181111111111, 11111111111811111111111, 1111111111118111111111111, 111111111111181111111111111, 11111111111111811111111111111, 1111111111111118111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)8(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11811...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes),
A077798 (palindromic wing primes),
A088281 (primes 1..1x1..1),
A068160 (smallest of given length),
A053701 (vertically symmetric numbers).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332118 := n -> (10^(2*n+1)-1)/9+7*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 7*10^# &, 15, 0]
-
apply( {A332118(n)=10^(n*2+1)\9+7*10^n}, [0..15])
-
def A332118(n): return 10**(n*2+1)//9+7*10**n
A332192
a(n) = 10^(2n+1) - 1 - 7*10^n.
Original entry on oeis.org
2, 929, 99299, 9992999, 999929999, 99999299999, 9999992999999, 999999929999999, 99999999299999999, 9999999992999999999, 999999999929999999999, 99999999999299999999999, 9999999999992999999999999, 999999999999929999999999999, 99999999999999299999999999999, 9999999999999992999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332112 ..
A332182 (variants with different repeated digit 1, ..., 8).
-
A332192 := n -> 10^(n*2+1)-1-7*10^n;
-
Array[ 10^(2 # +1) -1 -7*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{2,929,99299},20] (* Harvey P. Dale, Nov 07 2022 *)
-
apply( {A332192(n)=10^(n*2+1)-1-7*10^n}, [0..15])
-
def A332192(n): return 10**(n*2+1)-1-7*10^n
A332114
a(n) = (10^(2n+1)-1)/9 + 3*10^n.
Original entry on oeis.org
4, 141, 11411, 1114111, 111141111, 11111411111, 1111114111111, 111111141111111, 11111111411111111, 1111111114111111111, 111111111141111111111, 11111111111411111111111, 1111111111114111111111111, 111111111111141111111111111, 11111111111111411111111111111, 1111111111111114111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)4(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11411...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332124 ..
A332194 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332114 := n -> (10^(2*n+1)-1)/9+3*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
-
apply( {A332114(n)=10^(n*2+1)\9+3*10^n}, [0..15])
-
def A332114(n): return 10**(n*2+1)//9+3*10**n
A332115
a(n) = (10^(2n+1)-1)/9 + 4*10^n.
Original entry on oeis.org
5, 151, 11511, 1115111, 111151111, 11111511111, 1111115111111, 111111151111111, 11111111511111111, 1111111115111111111, 111111111151111111111, 11111111111511111111111, 1111111111115111111111111, 111111111111151111111111111, 11111111111111511111111111111, 1111111111111115111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)5(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11511...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332125 ..
A332195 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332115 := n -> (10^(2*n+1)-1)/9+4*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0]
-
apply( {A332115(n)=10^(n*2+1)\9+4*10^n}, [0..15])
-
def A332115(n): return 10**(n*2+1)//9+4*10**n
A332116
a(n) = (10^(2n+1)-1)/9 + 5*10^n.
Original entry on oeis.org
6, 161, 11611, 1116111, 111161111, 11111611111, 1111116111111, 111111161111111, 11111111611111111, 1111111116111111111, 111111111161111111111, 11111111111611111111111, 1111111111116111111111111, 111111111111161111111111111, 11111111111111611111111111111, 1111111111111116111111111111111
Offset: 0
- Patrick De Geest, Palindromic Wing Primes: (1)6(1), updated: June 25, 2017.
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Makoto Kamada, Factorization of 11...11611...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332126 ..
A332196 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332116 := n -> (10^(2*n+1)-1)/9+5*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
-
apply( {A332116(n)=10^(n*2+1)\9+5*10^n}, [0..15])
-
def A332116(n): return 10**(n*2+1)//9+5*10**n
A332124
a(n) = 2*(10^(2n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
4, 242, 22422, 2224222, 222242222, 22222422222, 2222224222222, 222222242222222, 22222222422222222, 2222222224222222222, 222222222242222222222, 22222222222422222222222, 2222222222224222222222222, 222222222222242222222222222, 22222222222222422222222222222, 2222222222222224222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332114 ..
A332194 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332124 := n -> 2*((10^(2*n+1)-1)/9+10^n);
-
Array[2 ((10^(2 # + 1)-1)/9 + 10^#) &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,2],{4},PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{4,242,22422},20](* Harvey P. Dale, Mar 06 2023 *)
-
apply( {A332124(n)=(10^(n*2+1)\9+10^n)*2}, [0..15])
-
def A332124(n): return (10**(n*2+1)//9+10**n)*2
A332132
a(n) = (10^(2n+1)-1)/3 - 10^n.
Original entry on oeis.org
2, 323, 33233, 3332333, 333323333, 33333233333, 3333332333333, 333333323333333, 33333333233333333, 3333333332333333333, 333333333323333333333, 33333333333233333333333, 3333333333332333333333333, 333333333333323333333333333, 33333333333333233333333333333, 3333333333333332333333333333333
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332112 ..
A332192 (variants with different repeated digit 1, ..., 9).
Cf.
A332130 ..
A332139 (variants with different middle digit 0, ..., 9).
-
A332132 := n -> (10^(2*n+1)-1)/3-10^n;
-
Array[ (10^(2 # + 1)-1)/3 - 10^# &, 15, 0]
-
apply( {A332132(n)=10^(n*2+1)\3-10^n}, [0..15])
-
def A332132(n): return 10**(n*2+1)//3-10**n
Showing 1-10 of 16 results.
Comments