A332197
a(n) = 10^(2n+1) - 1 - 2*10^n.
Original entry on oeis.org
7, 979, 99799, 9997999, 999979999, 99999799999, 9999997999999, 999999979999999, 99999999799999999, 9999999997999999999, 999999999979999999999, 99999999999799999999999, 9999999999997999999999999, 999999999999979999999999999, 99999999999999799999999999999, 9999999999999997999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only).
Cf.
A332117 ..
A332187 (variants with different repeated digit 1, ..., 9).
-
A332197 := n -> 10^(n*2+1)-1-2*10^n;
-
Array[ 10^(2 # + 1) -1 -2*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,9],{7},PadRight[{},n,9]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{7,979,99799},20] (* Harvey P. Dale, Mar 03 2023 *)
-
apply( {A332197(n)=10^(n*2+1)-1-2*10^n}, [0..15])
-
def A332197(n): return 10**(n*2+1)-1-2*10^n
A332127
a(n) = 2*(10^(2n+1)-1)/9 + 5*10^n.
Original entry on oeis.org
7, 272, 22722, 2227222, 222272222, 22222722222, 2222227222222, 222222272222222, 22222222722222222, 2222222227222222222, 222222222272222222222, 22222222222722222222222, 2222222222227222222222222, 222222222222272222222222222, 22222222222222722222222222222, 2222222222222227222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332117 ..
A332197 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332127 := n -> 2*(10^(2*n+1)-1)/9+5*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
-
apply( {A332127(n)=10^(n*2+1)\9*2+5*10^n}, [0..15])
-
def A332127(n): return 10**(n*2+1)//9*2+5*10**n
A332187
a(n) = 8*(10^(2n+1)-1)/9 - 10^n.
Original entry on oeis.org
7, 878, 88788, 8887888, 888878888, 88888788888, 8888887888888, 888888878888888, 88888888788888888, 8888888887888888888, 888888888878888888888, 88888888888788888888888, 8888888888887888888888888, 888888888888878888888888888, 88888888888888788888888888888, 8888888888888887888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332117 ..
A332197 (variants with different "wing" digit 1, ..., 9).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
-
A332187 := n -> 8*(10^(2*n+1)-1)/9-10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{7,878,88788},20] (* Harvey P. Dale, Jul 21 2024 *)
-
apply( {A332187(n)=10^(n*2+1)\9*8-10^n}, [0..15])
-
def A332187(n): return 10**(n*2+1)//9*8-10**n
A332167
a(n) = 6*(10^(2*n+1)-1)/9 + 10^n.
Original entry on oeis.org
7, 676, 66766, 6667666, 666676666, 66666766666, 6666667666666, 666666676666666, 66666666766666666, 6666666667666666666, 666666666676666666666, 66666666666766666666666, 6666666666667666666666666, 666666666666676666666666666, 66666666666666766666666666666, 6666666666666667666666666666666
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332117 ..
A332197 (variants with different repeated digit 1, ..., 9).
Cf.
A332160 ..
A332169 (variants with different middle digit 0, ..., 9).
-
A332167 := n -> 6*(10^(2*n+1)-1)/9+10^n;
-
Array[6 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332167(n)=10^(n*2+1)\9*6+10^n}, [0..15])
-
def A332167(n): return 10**(n*2+1)//9*6+10**n
A332147
a(n) = 4*(10^(2*n+1)-1)/9 + 3*10^n.
Original entry on oeis.org
7, 474, 44744, 4447444, 444474444, 44444744444, 4444447444444, 444444474444444, 44444444744444444, 4444444447444444444, 444444444474444444444, 44444444444744444444444, 4444444444447444444444444, 444444444444474444444444444, 44444444444444744444444444444, 4444444444444447444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332117 ..
A332197 (variants with different repeated digit 1, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332147 := n -> 4*(10^(2*n+1)-1)/9+3*10^n;
-
Array[4 (10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{7,474,44744},20] (* Harvey P. Dale, Mar 08 2022 *)
-
apply( {A332147(n)=10^(n*2+1)\9*4+3*10^n}, [0..15])
-
def A332147(n): return 10**(n*2+1)//9*4+3*10**n
A332157
a(n) = 5*(10^(2*n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
7, 575, 55755, 5557555, 555575555, 55555755555, 5555557555555, 555555575555555, 55555555755555555, 5555555557555555555, 555555555575555555555, 55555555555755555555555, 5555555555557555555555555, 555555555555575555555555555, 55555555555555755555555555555, 5555555555555557555555555555555
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332117 ..
A332197 (variants with different repeated digit 1, ..., 9).
Cf.
A332150 ..
A332159 (variants with different middle digit 0, ..., 9).
-
A332157 := n -> 5*(10^(2*n+1)-1)/9+2*10^n;
-
Array[5 (10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
-
apply( {A332157(n)=10^(n*2+1)\9*5+2*10^n}, [0..15])
-
def A332157(n): return 10**(n*2+1)//9*5+2*10**n
Showing 1-6 of 6 results.
Comments