A332190
a(n) = 10^(2n+1) - 1 - 9*10^n.
Original entry on oeis.org
0, 909, 99099, 9990999, 999909999, 99999099999, 9999990999999, 999999909999999, 99999999099999999, 9999999990999999999, 999999999909999999999, 99999999999099999999999, 9999999999990999999999999, 999999999999909999999999999, 99999999999999099999999999999, 9999999999999990999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332120 ..
A332180 (variants with different repeated digit 2, ..., 8).
-
A332190 := n -> 10^(2*n+1)-1-9*10^n;
-
Array[10^(2 # + 1)-1-9*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{0,909,99099},20] (* Harvey P. Dale, May 28 2021 *)
-
apply( {A332190(n)=10^(n*2+1)-1-9*10^n}, [0..15])
-
def A332190(n): return 10**(n*2+1)-1-9*10^n
A181965
a(n) = 10^(2n+1) - 10^n - 1.
Original entry on oeis.org
8, 989, 99899, 9998999, 999989999, 99999899999, 9999998999999, 999999989999999, 99999999899999999, 9999999998999999999, 999999999989999999999, 99999999999899999999999, 9999999999998999999999999, 999999999999989999999999999, 99999999999999899999999999999, 9999999999999998999999999999999
Offset: 0
- Patrick De Geest, Palindromic Wing Primes: (9)8(9), updated: June 25, 2017.
- Makoto Kamada, Factorization of 99...99899...99, updated Dec 11 2018.
- Markus Tervooren, Factorizations of (9)w8(9)w, FactorDB.com
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332190 ..
A332197 (variants with different middle digit 0, ..., 7).
-
A181965 := n -> 10^(2*n+1)-1-10^n; # M. F. Hasler, Feb 08 2020
-
Array[10^(2 # + 1) - 1- 10^# &, 15, 0] (* M. F. Hasler, Feb 08 2020 *)
Table[With[{c=PadRight[{},n,9]},FromDigits[Join[c,{8},c]]],{n,0,20}] (* Harvey P. Dale, Jun 07 2021 *)
-
apply( {A181965(n)=10^(n*2+1)-1-10^n}, [0..15]) \\ M. F. Hasler, Feb 08 2020
-
def A181965(n): return 10**(n*2+1)-1-10^n # M. F. Hasler, Feb 08 2020
Edited and extended to a(0) = 8 by
M. F. Hasler, Feb 10 2020
A332191
a(n) = 10^(2n+1) - 1 - 8*10^n.
Original entry on oeis.org
1, 919, 99199, 9991999, 999919999, 99999199999, 9999991999999, 999999919999999, 99999999199999999, 9999999991999999999, 999999999919999999999, 99999999999199999999999, 9999999999991999999999999, 999999999999919999999999999, 99999999999999199999999999999, 9999999999999991999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332121 ..
A332181 (variants with different repeated digit 2, ..., 8).
-
A332191 := n -> 10^(n*2+1)-1-8*10^n;
-
Array[ 10^(2 # + 1)-1-8*10^# &, 15, 0]
-
apply( {A332191(n)=10^(n*2+1)-1-8*10^n}, [0..15])
-
def A332191(n): return 10**(n*2+1)-1-8*10^n
A332117
a(n) = (10^(2n+1)-1)/9 + 6*10^n.
Original entry on oeis.org
7, 171, 11711, 1117111, 111171111, 11111711111, 1111117111111, 111111171111111, 11111111711111111, 1111111117111111111, 111111111171111111111, 11111111111711111111111, 1111111111117111111111111, 111111111111171111111111111, 11111111111111711111111111111, 1111111111111117111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)7(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11711...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332127 ..
A332197 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332117 := n -> (10^(2*n+1)-1)/9+6*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 6*10^# &, 15, 0]
-
apply( {A332117(n)=10^(n*2+1)\9+6*10^n}, [0..15])
-
def A332117(n): return 10**(n*2+1)//9+6*10**n
A332192
a(n) = 10^(2n+1) - 1 - 7*10^n.
Original entry on oeis.org
2, 929, 99299, 9992999, 999929999, 99999299999, 9999992999999, 999999929999999, 99999999299999999, 9999999992999999999, 999999999929999999999, 99999999999299999999999, 9999999999992999999999999, 999999999999929999999999999, 99999999999999299999999999999, 9999999999999992999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332112 ..
A332182 (variants with different repeated digit 1, ..., 8).
-
A332192 := n -> 10^(n*2+1)-1-7*10^n;
-
Array[ 10^(2 # +1) -1 -7*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{2,929,99299},20] (* Harvey P. Dale, Nov 07 2022 *)
-
apply( {A332192(n)=10^(n*2+1)-1-7*10^n}, [0..15])
-
def A332192(n): return 10**(n*2+1)-1-7*10^n
A332193
a(n) = 10^(2n+1) - 1 - 6*10^n.
Original entry on oeis.org
3, 939, 99399, 9993999, 999939999, 99999399999, 9999993999999, 999999939999999, 99999999399999999, 9999999993999999999, 999999999939999999999, 99999999999399999999999, 9999999999993999999999999, 999999999999939999999999999, 99999999999999399999999999999, 9999999999999993999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332113 ..
A332183 (variants with different repeated digit 1, ..., 8).
-
A332193 := n -> 10^(n*2+1)-1-6*10^n;
-
Array[ 10^(2 # + 1) - 1 - 6*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{3,939,99399},20] (* Harvey P. Dale, Jan 19 2024 *)
-
apply( {A332193(n)=10^(n*2+1)-1-6*10^n}, [0..15])
-
def A332193(n): return 10**(n*2+1)-1-6*10^n
A332195
a(n) = 10^(2n+1) - 4*10^n - 1.
Original entry on oeis.org
5, 959, 99599, 9995999, 999959999, 99999599999, 9999995999999, 999999959999999, 99999999599999999, 9999999995999999999, 999999999959999999999, 99999999999599999999999, 9999999999995999999999999, 999999999999959999999999999, 99999999999999599999999999999, 9999999999999995999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332115 ..
A332185 (variants with different repeated digit 1, ..., 8).
-
A332195 := n -> 10^(n*2+1)-4*10^n-1;
-
Array[ 10^(2 # + 1) - 1 - 4*10^# &, 15, 0]
-
apply( {A332195(n)=10^(n*2+1)-1-4*10^n}, [0..15])
-
def A332195(n): return 10**(n*2+1)-1-4*10^n
A332196
a(n) = 10^(2n+1) - 1 - 3*10^n.
Original entry on oeis.org
6, 969, 99699, 9996999, 999969999, 99999699999, 9999996999999, 999999969999999, 99999999699999999, 9999999996999999999, 999999999969999999999, 99999999999699999999999, 9999999999996999999999999, 999999999999969999999999999, 99999999999999699999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332116 ..
A332186 (variants with different repeated digit 1, ..., 8).
-
A332196 := n -> 10^(n*2+1)-1-3*10^n;
-
Array[ 10^(2 # + 1) - 1 - 3*10^# &, 15, 0]
FromDigits/@Table[Join[PadLeft[{6},n,9],PadRight[{},n-1,9]],{n,30}] (* or *) LinearRecurrence[{111,-1110,1000},{6,969,99699},30] (* Harvey P. Dale, May 03 2021 *)
-
apply( {A332196(n)=10^(n*2+1)-1-3*10^n}, [0..15])
-
def A332196(n): return 10**(n*2+1)-1-3*10^n
A332194
a(n) = 10^(2n+1) - 1 - 5*10^n.
Original entry on oeis.org
4, 949, 99499, 9994999, 999949999, 99999499999, 9999994999999, 999999949999999, 99999999499999999, 9999999994999999999, 999999999949999999999, 99999999999499999999999, 9999999999994999999999999, 999999999999949999999999999, 99999999999999499999999999999, 9999999999999994999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332114 ..
A332184 (variants with different repeated digit 1, ..., 8).
-
A332194 := n -> 10^(n*2+1)-1-5*10^n;
-
Array[ 10^(2 # + 1) -1 -5*10^# &, 15, 0]
-
apply( {A332194(n)=10^(n*2+1)-1-5*10^n}, [0..15])
-
def A332194(n): return 10**(n*2+1)-1-5*10^n
A332127
a(n) = 2*(10^(2n+1)-1)/9 + 5*10^n.
Original entry on oeis.org
7, 272, 22722, 2227222, 222272222, 22222722222, 2222227222222, 222222272222222, 22222222722222222, 2222222227222222222, 222222222272222222222, 22222222222722222222222, 2222222222227222222222222, 222222222222272222222222222, 22222222222222722222222222222, 2222222222222227222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332117 ..
A332197 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332127 := n -> 2*(10^(2*n+1)-1)/9+5*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
-
apply( {A332127(n)=10^(n*2+1)\9*2+5*10^n}, [0..15])
-
def A332127(n): return 10**(n*2+1)//9*2+5*10**n
Showing 1-10 of 15 results.
Comments