cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A332190 a(n) = 10^(2n+1) - 1 - 9*10^n.

Original entry on oeis.org

0, 909, 99099, 9990999, 999909999, 99999099999, 9999990999999, 999999909999999, 99999999099999999, 9999999990999999999, 999999999909999999999, 99999999999099999999999, 9999999999990999999999999, 999999999999909999999999999, 99999999999999099999999999999, 9999999999999990999999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332120 .. A332180 (variants with different repeated digit 2, ..., 8).
Cf. A332191 .. A332197, A181965 (variants with different middle digit 1, ..., 8).

Programs

  • Maple
    A332190 := n -> 10^(2*n+1)-1-9*10^n;
  • Mathematica
    Array[10^(2 # + 1)-1-9*10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{0,909,99099},20] (* Harvey P. Dale, May 28 2021 *)
  • PARI
    apply( {A332190(n)=10^(n*2+1)-1-9*10^n}, [0..15])
    
  • Python
    def A332190(n): return 10**(n*2+1)-1-9*10^n

Formula

a(n) = 9*A138148(n) = A002283(2n+1) - A011557(n).
G.f.: 9*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A181965 a(n) = 10^(2n+1) - 10^n - 1.

Original entry on oeis.org

8, 989, 99899, 9998999, 999989999, 99999899999, 9999998999999, 999999989999999, 99999999899999999, 9999999998999999999, 999999999989999999999, 99999999999899999999999, 9999999999998999999999999, 999999999999989999999999999, 99999999999999899999999999999, 9999999999999998999999999999999
Offset: 0

Views

Author

Ivan Panchenko, Apr 04 2012

Keywords

Comments

n 9's followed by an 8 followed by n 9's.
See A183187 = {26, 378, 1246, 1798, 2917, ...} for the indices of primes.

Crossrefs

Cf. (A077794-1)/2 = A183187 (indices of primes).
Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332190 .. A332197 (variants with different middle digit 0, ..., 7).

Programs

  • Maple
    A181965 := n -> 10^(2*n+1)-1-10^n; # M. F. Hasler, Feb 08 2020
  • Mathematica
    Array[10^(2 # + 1) - 1- 10^# &, 15, 0] (*  M. F. Hasler, Feb 08 2020 *)
    Table[With[{c=PadRight[{},n,9]},FromDigits[Join[c,{8},c]]],{n,0,20}] (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    apply( {A181965(n)=10^(n*2+1)-1-10^n}, [0..15]) \\ M. F. Hasler, Feb 08 2020
    
  • Python
    def A181965(n): return 10**(n*2+1)-1-10^n # M. F. Hasler, Feb 08 2020

Formula

From M. F. Hasler, Feb 08 2020: (Start)
a(n) = 9*A138148(n) + 8*10^n = A002283(2n+1) - A011557(10^n).
G.f.: (8 + 101*x - 1000*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2. (End)

Extensions

Edited and extended to a(0) = 8 by M. F. Hasler, Feb 10 2020

A332191 a(n) = 10^(2n+1) - 1 - 8*10^n.

Original entry on oeis.org

1, 919, 99199, 9991999, 999919999, 99999199999, 9999991999999, 999999919999999, 99999999199999999, 9999999991999999999, 999999999919999999999, 99999999999199999999999, 9999999999991999999999999, 999999999999919999999999999, 99999999999999199999999999999, 9999999999999991999999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A183184 = {1, 5, 13, 43, 169, 181, ...} for the indices of primes.

Crossrefs

Cf. (A077776-1)/2 = A183184: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332121 .. A332181 (variants with different repeated digit 2, ..., 8).
Cf. A332190 .. A332197, A181965 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332191 := n -> 10^(n*2+1)-1-8*10^n;
  • Mathematica
    Array[ 10^(2 # + 1)-1-8*10^# &, 15, 0]
  • PARI
    apply( {A332191(n)=10^(n*2+1)-1-8*10^n}, [0..15])
    
  • Python
    def A332191(n): return 10**(n*2+1)-1-8*10^n

Formula

a(n) = 9*A138148(n) + 10^n.
G.f.: (1 + 808*x - 1700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332117 a(n) = (10^(2n+1)-1)/9 + 6*10^n.

Original entry on oeis.org

7, 171, 11711, 1117111, 111171111, 11111711111, 1111117111111, 111111171111111, 11111111711111111, 1111111117111111111, 111111111171111111111, 11111111111711111111111, 1111111111117111111111111, 111111111111171111111111111, 11111111111111711111111111111, 1111111111111117111111111111111
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A107127 = {0, 3, 33, 311, 2933, ...} for the indices of primes.

Crossrefs

Cf. (A077789-1)/2 = A107127: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332127 .. A332197 (variants with different repeated digit 2, ..., 9).
Cf. A332112 .. A332119 (variants with different middle digit 2, ..., 9).

Programs

  • Maple
    A332117 := n -> (10^(2*n+1)-1)/9+6*10^n;
  • Mathematica
    Array[(10^(2 # + 1)-1)/9 + 6*10^# &, 15, 0]
  • PARI
    apply( {A332117(n)=10^(n*2+1)\9+6*10^n}, [0..15])
    
  • Python
    def A332117(n): return 10**(n*2+1)//9+6*10**n

Formula

a(n) = A138148(n) + 7*10^n = A002275(2n+1) + 6*10^n.
G.f.: (7 - 606*x + 500*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332192 a(n) = 10^(2n+1) - 1 - 7*10^n.

Original entry on oeis.org

2, 929, 99299, 9992999, 999929999, 99999299999, 9999992999999, 999999929999999, 99999999299999999, 9999999992999999999, 999999999929999999999, 99999999999299999999999, 9999999999992999999999999, 999999999999929999999999999, 99999999999999299999999999999, 9999999999999992999999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A115073 = {1, 8, 9, 352, 530, 697, ...} for the indices of primes.

Crossrefs

Cf. (A077778-1)/2 = A115073: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332190 .. A332197, A181965 (variants with different middle digit 0, ..., 8).
Cf. A332112 .. A332182 (variants with different repeated digit 1, ..., 8).

Programs

  • Maple
    A332192 := n -> 10^(n*2+1)-1-7*10^n;
  • Mathematica
    Array[ 10^(2 # +1) -1 -7*10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{2,929,99299},20] (* Harvey P. Dale, Nov 07 2022 *)
  • PARI
    apply( {A332192(n)=10^(n*2+1)-1-7*10^n}, [0..15])
    
  • Python
    def A332192(n): return 10**(n*2+1)-1-7*10^n

Formula

a(n) = 9*A138148(n) + 2*10^n = A002283(2n+1) - 7*10^n.
G.f.: (2 + 707*x - 1600*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332193 a(n) = 10^(2n+1) - 1 - 6*10^n.

Original entry on oeis.org

3, 939, 99399, 9993999, 999939999, 99999399999, 9999993999999, 999999939999999, 99999999399999999, 9999999993999999999, 999999999939999999999, 99999999999399999999999, 9999999999993999999999999, 999999999999939999999999999, 99999999999999399999999999999, 9999999999999993999999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332113 .. A332183 (variants with different repeated digit 1, ..., 8).
Cf. A332190 .. A332197, A181965 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332193 := n -> 10^(n*2+1)-1-6*10^n;
  • Mathematica
    Array[ 10^(2 # + 1) - 1 - 6*10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{3,939,99399},20] (* Harvey P. Dale, Jan 19 2024 *)
  • PARI
    apply( {A332193(n)=10^(n*2+1)-1-6*10^n}, [0..15])
    
  • Python
    def A332193(n): return 10**(n*2+1)-1-6*10^n

Formula

a(n) = 9*A138148(n) + 3*10^n = A002283(2n+1) - 6*10^n.
G.f.: (3 + 606*x - 1500*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332195 a(n) = 10^(2n+1) - 4*10^n - 1.

Original entry on oeis.org

5, 959, 99599, 9995999, 999959999, 99999599999, 9999995999999, 999999959999999, 99999999599999999, 9999999995999999999, 999999999959999999999, 99999999999599999999999, 9999999999995999999999999, 999999999999959999999999999, 99999999999999599999999999999, 9999999999999995999999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A183186 = {88, 112, 198, 622, 4228, ...} for the indices of primes.

Crossrefs

Cf. (A077786-1)/2 = A183186: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332115 .. A332185 (variants with different repeated digit 1, ..., 8).
Cf. A332190 .. A332197, A181965 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332195 := n -> 10^(n*2+1)-4*10^n-1;
  • Mathematica
    Array[ 10^(2 # + 1) - 1 - 4*10^# &, 15, 0]
  • PARI
    apply( {A332195(n)=10^(n*2+1)-1-4*10^n}, [0..15])
    
  • Python
    def A332195(n): return 10**(n*2+1)-1-4*10^n

Formula

a(n) = 9*A138148(n) + 5*10^n.
G.f.: (5 + 404*x - 1300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332196 a(n) = 10^(2n+1) - 1 - 3*10^n.

Original entry on oeis.org

6, 969, 99699, 9996999, 999969999, 99999699999, 9999996999999, 999999969999999, 99999999699999999, 9999999996999999999, 999999999969999999999, 99999999999699999999999, 9999999999996999999999999, 999999999999969999999999999, 99999999999999699999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332116 .. A332186 (variants with different repeated digit 1, ..., 8).
Cf. A332190 .. A332197, A181965 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332196 := n -> 10^(n*2+1)-1-3*10^n;
  • Mathematica
    Array[ 10^(2 # + 1) - 1 - 3*10^# &, 15, 0]
    FromDigits/@Table[Join[PadLeft[{6},n,9],PadRight[{},n-1,9]],{n,30}] (* or *) LinearRecurrence[{111,-1110,1000},{6,969,99699},30] (* Harvey P. Dale, May 03 2021 *)
  • PARI
    apply( {A332196(n)=10^(n*2+1)-1-3*10^n}, [0..15])
    
  • Python
    def A332196(n): return 10**(n*2+1)-1-3*10^n

Formula

a(n) = 9*A138148(n) + 6*10^n.
G.f.: (6 + 303*x - 1200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: exp(x)*(10*exp(99*x) - 3*exp(9*x) - 1). - Stefano Spezia, Jul 13 2024

A332194 a(n) = 10^(2n+1) - 1 - 5*10^n.

Original entry on oeis.org

4, 949, 99499, 9994999, 999949999, 99999499999, 9999994999999, 999999949999999, 99999999499999999, 9999999994999999999, 999999999949999999999, 99999999999499999999999, 9999999999994999999999999, 999999999999949999999999999, 99999999999999499999999999999, 9999999999999994999999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A183185 = {14, 22, 36, 104, 1136, ...} for the indices of primes.

Crossrefs

Cf. (A077782-1)/2 = A183185: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332114 .. A332184 (variants with different repeated digit 1, ..., 8).
Cf. A332190 .. A332197, A181965 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332194 := n -> 10^(n*2+1)-1-5*10^n;
  • Mathematica
    Array[ 10^(2 # + 1) -1 -5*10^# &, 15, 0]
  • PARI
    apply( {A332194(n)=10^(n*2+1)-1-5*10^n}, [0..15])
    
  • Python
    def A332194(n): return 10**(n*2+1)-1-5*10^n

Formula

a(n) = 9*A138148(n) + 4*10^n = A002283(2n+1) - 5*A011557(n).
G.f.: (4 + 505*x - 1400*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332127 a(n) = 2*(10^(2n+1)-1)/9 + 5*10^n.

Original entry on oeis.org

7, 272, 22722, 2227222, 222272222, 22222722222, 2222227222222, 222222272222222, 22222222722222222, 2222222227222222222, 222222222272222222222, 22222222222722222222222, 2222222222227222222222222, 222222222222272222222222222, 22222222222222722222222222222, 2222222222222227222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332117 .. A332197 (variants with different repeated digit 1, ..., 9).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332127 := n -> 2*(10^(2*n+1)-1)/9+5*10^n;
  • Mathematica
    Array[2 (10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
  • PARI
    apply( {A332127(n)=10^(n*2+1)\9*2+5*10^n}, [0..15])
    
  • Python
    def A332127(n): return 10**(n*2+1)//9*2+5*10**n

Formula

a(n) = 2*A138148(n) + 7*10^n = A002276(2n+1) + 5*10^n.
G.f.: (7 - 505*x + 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
Showing 1-10 of 15 results. Next