cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A332190 a(n) = 10^(2n+1) - 1 - 9*10^n.

Original entry on oeis.org

0, 909, 99099, 9990999, 999909999, 99999099999, 9999990999999, 999999909999999, 99999999099999999, 9999999990999999999, 999999999909999999999, 99999999999099999999999, 9999999999990999999999999, 999999999999909999999999999, 99999999999999099999999999999, 9999999999999990999999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332120 .. A332180 (variants with different repeated digit 2, ..., 8).
Cf. A332191 .. A332197, A181965 (variants with different middle digit 1, ..., 8).

Programs

  • Maple
    A332190 := n -> 10^(2*n+1)-1-9*10^n;
  • Mathematica
    Array[10^(2 # + 1)-1-9*10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{0,909,99099},20] (* Harvey P. Dale, May 28 2021 *)
  • PARI
    apply( {A332190(n)=10^(n*2+1)-1-9*10^n}, [0..15])
    
  • Python
    def A332190(n): return 10**(n*2+1)-1-9*10^n

Formula

a(n) = 9*A138148(n) = A002283(2n+1) - A011557(n).
G.f.: 9*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332121 a(n) = 2*(10^(2n+1)-1)/9 - 10^n.

Original entry on oeis.org

1, 212, 22122, 2221222, 222212222, 22222122222, 2222221222222, 222222212222222, 22222222122222222, 2222222221222222222, 222222222212222222222, 22222222222122222222222, 2222222222221222222222222, 222222222222212222222222222, 22222222222222122222222222222, 2222222222222221222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).
Cf. A332131 .. A332191 (variants with different repeated digit 3, ..., 9).

Programs

  • Maple
    A332121 := n -> 2*(10^(2*n+1)-1)/9-10^n;
  • Mathematica
    Array[2 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
  • PARI
    apply( {A332121(n)=10^(n*2+1)\9*2-10^n}, [0..15])
    
  • Python
    def A332121(n): return 10**(n*2+1)//9*2-10**n

Formula

a(n) = 2*A138148(n) + 1*10^n = A002276(2n+1) - 10^n.
G.f.: (1 + 101*x - 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332171 a(n) = 7*(10^(2n+1)-1)/9 - 6*10^n.

Original entry on oeis.org

1, 717, 77177, 7771777, 777717777, 77777177777, 7777771777777, 777777717777777, 77777777177777777, 7777777771777777777, 777777777717777777777, 77777777777177777777777, 7777777777771777777777777, 777777777777717777777777777, 77777777777777177777777777777, 7777777777777771777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 06 2020

Keywords

Comments

For n == 0 or n == 2 (mod 6), there is no obvious divisibility pattern.
According to M. Kamada, n = 116 is the only index of a prime up to n = 10^5.

Crossrefs

Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A002275 (repunits R_n = [10^n/9]), A002281 (7*R_n), A011557 (10^n).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332170 .. A332179 (variants with different middle digit 2, ..., 9).

Programs

  • Mathematica
    Array[7 (10^(2 # + 1) - 1)/9 - 6*10^# &, 15, 0] (* or *)
    CoefficientList[Series[(1 + 606 x - 1300 x^2)/((1 - x) (1 - 10 x) (1 - 100 x)), {x, 0, 15}], x] (* Michael De Vlieger, Feb 08 2020 *)
    Table[FromDigits[Join[PadRight[{},n,7],{1},PadRight[{},n,7]]],{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{1,717,77177},20] (* Harvey P. Dale, Apr 04 2024 *)
  • PARI
    apply( {A332171(n)=10^(n*2+1)\9*7-6*10^n}, [0..15])
    
  • PARI
    Vec((1 + 606*x - 1300*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^15)) \\ Colin Barker, Feb 07 2020
    
  • Python
    def A332171(n): return 10**(n*2+1)//9*7-6*10^n

Formula

a(n) = 7*A138148(n) + 10^n.
For n == 1 (mod 3), 3 | a(n) and a(n)/3 = 259*(10^(2n+1)-1)/999 - 2*10^n;
for n == 3 or 5 (mod 6), 13 | a(n) and a(n)/13 = (A(n)-1)*10^n + B(n), where A(n) (resp. B(n)) are the n leftmost (resp. rightmost) digits of 59829*(10^(ceiling(n/6)*6)-1)/(10^6-1).
From Colin Barker, Feb 07 2020: (Start)
G.f.: (1 + 606*x - 1300*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
(End)
E.g.f.: (1/9)*exp(x)*(70*exp(99*x) - 54*exp(9*x) - 7). - Stefano Spezia, Feb 08 2020

A332131 a(n) = (10^(2n+1)-1)/3 - 2*10^n.

Original entry on oeis.org

1, 313, 33133, 3331333, 333313333, 33333133333, 3333331333333, 333333313333333, 33333333133333333, 3333333331333333333, 333333333313333333333, 33333333333133333333333, 3333333333331333333333333, 333333333333313333333333333, 33333333333333133333333333333, 3333333333333331333333333333333
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A183174 = {1, 3, 7, 61, 90, 92, 269, ...} for the indices of primes.

Crossrefs

Cf. (A077775-1)/2 = A183174: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332130 .. A332139 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332131 := n -> (10^(2*n+1)-1)/3-2*10^n;
  • Mathematica
    Array[3 (10^(2 # + 1)-1)/9 - 2*10^# &, 15, 0]
  • PARI
    apply( {A332131(n)=10^(n*2+1)\3-2*10^n}, [0..15])
    
  • Python
    def A332131(n): return 10**(n*2+1)//3-2*10**n

Formula

a(n) = 3*A138148(n) + 1*10^n = A002277(2n+1) - 2*10^n.
G.f.: (1 + 202*x - 500*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332181 a(n) = 8*(10^(2n+1)-1)/9 - 7*10^n.

Original entry on oeis.org

1, 818, 88188, 8881888, 888818888, 88888188888, 8888881888888, 888888818888888, 88888888188888888, 8888888881888888888, 888888888818888888888, 88888888888188888888888, 8888888888881888888888888, 888888888888818888888888888, 88888888888888188888888888888, 8888888888888881888888888888888
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. (A077776-1)/2 = A183184: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002282 (8*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332180 .. A332189 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332181 := n -> 8*(10^(2*n+1)-1)/9-7*10^n;
  • Mathematica
    Array[8 (10^(2 # + 1)-1)/9 - 7*10^# &, 15, 0]
  • PARI
    apply( {A332181(n)=10^(n*2+1)\9*8-7*10^n}, [0..15])
    
  • Python
    def A332181(n): return 10**(n*2+1)//9*8-7*10**n

Formula

a(n) = 8*A138148(n) + 10^n = A002282(2n+1) - 7*10^n.
G.f.: (1 + 707*x - 1500*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332141 a(n) = 4*(10^(2*n+1)-1)/9 - 3*10^n.

Original entry on oeis.org

1, 414, 44144, 4441444, 444414444, 44444144444, 4444441444444, 444444414444444, 44444444144444444, 4444444441444444444, 444444444414444444444, 44444444444144444444444, 4444444444441444444444444, 444444444444414444444444444, 44444444444444144444444444444, 4444444444444441444444444444444
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002278 (4*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332140 .. A332149 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332141 := n -> 4*(10^(2*n+1)-1)/9-3*10^n;
  • Mathematica
    Array[4 (10^(2 # + 1)-1)/9 - 3*10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{1,414,44144},20] (* or *) Table[ FromDigits[Join[PadRight[{},n,4],{1},PadRight[{},n,4]]],{n,0,20}](* Harvey P. Dale, Aug 17 2020 *)
  • PARI
    apply( {A332141(n)=10^(n*2+1)\9*4-3*10^n}, [0..15])
    
  • Python
    def A332141(n): return 10**(n*2+1)//9*4-3*10**n

Formula

a(n) = 4*A138148(n) + 1*10^n = A002278(2n+1) - 3*10^n.
G.f.: (1 + 303*x - 700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332151 a(n) = 5*(10^(2*n+1)-1)/9 - 4*10^n.

Original entry on oeis.org

1, 515, 55155, 5551555, 555515555, 55555155555, 5555551555555, 555555515555555, 55555555155555555, 5555555551555555555, 555555555515555555555, 55555555555155555555555, 5555555555551555555555555, 555555555555515555555555555, 55555555555555155555555555555, 5555555555555551555555555555555
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332151 := n -> 5*(10^(2*n+1)-1)/9-4*10^n;
  • Mathematica
    Array[5 (10^(2 # + 1)-1)/9 - 4*10^# &, 15, 0]
    Table[With[{c=PadRight[{},n,5]},FromDigits[Join[c,{1},c]]],{n,0,20}] (* Harvey P. Dale, Mar 16 2021 *)
  • PARI
    apply( {A332151(n)=10^(n*2+1)\9*5-4*10^n}, [0..15])
    
  • Python
    def A332151(n): return 10**(n*2+1)//9*5-4*10**n

Formula

a(n) = 5*A138148(n) + 10^n = A002279(2n+1) - 4*10^n.
G.f.: (1 + 404*x - 900*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332161 a(n) = 6*(10^(2*n+1)-1)/9 - 5*10^n.

Original entry on oeis.org

1, 616, 66166, 6661666, 666616666, 66666166666, 6666661666666, 666666616666666, 66666666166666666, 6666666661666666666, 666666666616666666666, 66666666666166666666666, 6666666666661666666666666, 666666666666616666666666666, 66666666666666166666666666666, 6666666666666661666666666666666
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002280 (6*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332160 .. A332169 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332161 := n -> 6*(10^(2*n+1)-1)/9-5*10^n;
  • Mathematica
    Array[6 (10^(2 # + 1)-1)/9 - 5*10^# &, 15, 0]
  • PARI
    apply( {A332161(n)=10^(n*2+1)\9*6-5*10^n}, [0..15])
    
  • Python
    def A332161(n): return 10**(n*2+1)//9*6-5*10**n

Formula

a(n) = 6*A138148(n) + 1*10^n = A002280(2n+1) - 5*10^n.
G.f.: (1 + 505*x - 1100*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
Showing 1-8 of 8 results.