A332120
a(n) = 2*(10^(2n+1)-1)/9 - 2*10^n.
Original entry on oeis.org
0, 202, 22022, 2220222, 222202222, 22222022222, 2222220222222, 222222202222222, 22222222022222222, 2222222220222222222, 222222222202222222222, 22222222222022222222222, 2222222222220222222222222, 222222222222202222222222222, 22222222222222022222222222222, 2222222222222220222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332130 ..
A332190 (variants with different repeated digit 3, ..., 9).
Cf.
A332121 ..
A332129 (variants with different middle digit 1, ..., 9).
-
A332120 := n -> 2*((10^(2*n+1)-1)/9-10^n);
-
Array[2 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
-
apply( {A332120(n)=(10^(n*2+1)\9-10^n)*2}, [0..15])
-
def A332120(n): return (10**(n*2+1)//9-10**n)*2
A332197
a(n) = 10^(2n+1) - 1 - 2*10^n.
Original entry on oeis.org
7, 979, 99799, 9997999, 999979999, 99999799999, 9999997999999, 999999979999999, 99999999799999999, 9999999997999999999, 999999999979999999999, 99999999999799999999999, 9999999999997999999999999, 999999999999979999999999999, 99999999999999799999999999999, 9999999999999997999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only).
Cf.
A332117 ..
A332187 (variants with different repeated digit 1, ..., 9).
-
A332197 := n -> 10^(n*2+1)-1-2*10^n;
-
Array[ 10^(2 # + 1) -1 -2*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,9],{7},PadRight[{},n,9]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{7,979,99799},20] (* Harvey P. Dale, Mar 03 2023 *)
-
apply( {A332197(n)=10^(n*2+1)-1-2*10^n}, [0..15])
-
def A332197(n): return 10**(n*2+1)-1-2*10^n
A181965
a(n) = 10^(2n+1) - 10^n - 1.
Original entry on oeis.org
8, 989, 99899, 9998999, 999989999, 99999899999, 9999998999999, 999999989999999, 99999999899999999, 9999999998999999999, 999999999989999999999, 99999999999899999999999, 9999999999998999999999999, 999999999999989999999999999, 99999999999999899999999999999, 9999999999999998999999999999999
Offset: 0
- Patrick De Geest, Palindromic Wing Primes: (9)8(9), updated: June 25, 2017.
- Makoto Kamada, Factorization of 99...99899...99, updated Dec 11 2018.
- Markus Tervooren, Factorizations of (9)w8(9)w, FactorDB.com
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332190 ..
A332197 (variants with different middle digit 0, ..., 7).
-
A181965 := n -> 10^(2*n+1)-1-10^n; # M. F. Hasler, Feb 08 2020
-
Array[10^(2 # + 1) - 1- 10^# &, 15, 0] (* M. F. Hasler, Feb 08 2020 *)
Table[With[{c=PadRight[{},n,9]},FromDigits[Join[c,{8},c]]],{n,0,20}] (* Harvey P. Dale, Jun 07 2021 *)
-
apply( {A181965(n)=10^(n*2+1)-1-10^n}, [0..15]) \\ M. F. Hasler, Feb 08 2020
-
def A181965(n): return 10**(n*2+1)-1-10^n # M. F. Hasler, Feb 08 2020
Edited and extended to a(0) = 8 by
M. F. Hasler, Feb 10 2020
A332180
a(n) = 8*(10^(2n+1)-1)/9 - 8*10^n.
Original entry on oeis.org
0, 808, 88088, 8880888, 888808888, 88888088888, 8888880888888, 888888808888888, 88888888088888888, 8888888880888888888, 888888888808888888888, 88888888888088888888888, 8888888888880888888888888, 888888888888808888888888888, 88888888888888088888888888888, 8888888888888880888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332181 ..
A332189 (variants with different middle digit 1, ..., 9).
Subsequence of
A006072 (numbers with mirror symmetry about middle),
A153806 (strobogrammatic cyclops numbers), and
A204095 (numbers whose decimal digits are in {0,8}).
-
A332180 := n -> 8*((10^(2*n+1)-1)/9-10^n);
-
Array[8 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
-
apply( {A332180(n)=(10^(n*2+1)\9-10^n)*8}, [0..15])
-
def A332180(n): return (10**(n*2+1)//9-10**n)*8
A332130
a(n) = (10^(2n+1)-1)/3 - 3*10^n.
Original entry on oeis.org
0, 303, 33033, 3330333, 333303333, 33333033333, 3333330333333, 333333303333333, 33333333033333333, 3333333330333333333, 333333333303333333333, 33333333333033333333333, 3333333333330333333333333, 333333333333303333333333333, 33333333333333033333333333333, 3333333333333330333333333333333
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332131 ..
A332139 (variants with different middle digit 1, ..., 9).
-
A332130 := n -> (10^(2*n+1)-1)/3-3*10^n;
-
Array[ ((10^(2 # + 1)-1)/3 - 3*10^#) &, 15, 0]
-
apply( {A332130(n)=10^(n*2+1)\3-3*10^n}, [0..15])
-
def A332130(n): return 10**(n*2+1)//3-3*10**n
A332140
a(n) = 4*(10^(2n+1)-1)/9 - 4*10^n.
Original entry on oeis.org
0, 404, 44044, 4440444, 444404444, 44444044444, 4444440444444, 444444404444444, 44444444044444444, 4444444440444444444, 444444444404444444444, 44444444444044444444444, 4444444444440444444444444, 444444444444404444444444444, 44444444444444044444444444444, 4444444444444440444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332141 ..
A332149 (variants with different middle digit 1, ..., 9).
-
A332140 := n -> 4*((10^(2*n+1)-1)/9-10^n);
-
Array[4 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
LinearRecurrence[{111,-1110,1000},{0,404,44044},20] (* Harvey P. Dale, Jul 06 2021 *)
-
apply( {A332140(n)=(10^(n*2+1)\9-10^n)*4}, [0..15])
-
def A332140(n): return (10**(n*2+1)//9-10**n)*4
A332150
a(n) = 5*(10^(2n+1)-1)/9 - 5*10^n.
Original entry on oeis.org
0, 505, 55055, 5550555, 555505555, 55555055555, 5555550555555, 555555505555555, 55555555055555555, 5555555550555555555, 555555555505555555555, 55555555555055555555555, 5555555555550555555555555, 555555555555505555555555555, 55555555555555055555555555555, 5555555555555550555555555555555
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332151 ..
A332159 (variants with different middle digit 1, ..., 9).
-
A332150 := n -> 5*((10^(2*n+1)-1)/9-10^n);
-
Array[5 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
Table[With[{c=PadRight[{},n,5]},FromDigits[Join[c,{0},c]]],{n,0,15}] (* or *) LinearRecurrence[{111,-1110,1000},{0,505,55055},20] (* Harvey P. Dale, Jun 30 2025 *)
-
apply( {A332150(n)=(10^(n*2+1)\9-10^n)*5}, [0..15])
-
def A332150(n): return (10**(n*2+1)//9-10**n)*5
A332160
a(n) = 6*(10^(2n+1)-1)/9 - 6*10^n.
Original entry on oeis.org
0, 606, 66066, 6660666, 666606666, 66666066666, 6666660666666, 666666606666666, 66666666066666666, 6666666660666666666, 666666666606666666666, 66666666666066666666666, 6666666666660666666666666, 666666666666606666666666666, 66666666666666066666666666666, 6666666666666660666666666666666
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332161 ..
A332169 (variants with different middle digit 1, ..., 9).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
-
A332160 := n -> 6*((10^(2*n+1)-1)/9-10^n);
-
Array[6 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
-
apply( {A332160(n)=(10^(n*2+1)\9-10^n)*6}, [0..15])
-
def A332160(n): return (10**(n*2+1)//9-10**n)*6
A332191
a(n) = 10^(2n+1) - 1 - 8*10^n.
Original entry on oeis.org
1, 919, 99199, 9991999, 999919999, 99999199999, 9999991999999, 999999919999999, 99999999199999999, 9999999991999999999, 999999999919999999999, 99999999999199999999999, 9999999999991999999999999, 999999999999919999999999999, 99999999999999199999999999999, 9999999999999991999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332121 ..
A332181 (variants with different repeated digit 2, ..., 8).
-
A332191 := n -> 10^(n*2+1)-1-8*10^n;
-
Array[ 10^(2 # + 1)-1-8*10^# &, 15, 0]
-
apply( {A332191(n)=10^(n*2+1)-1-8*10^n}, [0..15])
-
def A332191(n): return 10**(n*2+1)-1-8*10^n
A332192
a(n) = 10^(2n+1) - 1 - 7*10^n.
Original entry on oeis.org
2, 929, 99299, 9992999, 999929999, 99999299999, 9999992999999, 999999929999999, 99999999299999999, 9999999992999999999, 999999999929999999999, 99999999999299999999999, 9999999999992999999999999, 999999999999929999999999999, 99999999999999299999999999999, 9999999999999992999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332112 ..
A332182 (variants with different repeated digit 1, ..., 8).
-
A332192 := n -> 10^(n*2+1)-1-7*10^n;
-
Array[ 10^(2 # +1) -1 -7*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{2,929,99299},20] (* Harvey P. Dale, Nov 07 2022 *)
-
apply( {A332192(n)=10^(n*2+1)-1-7*10^n}, [0..15])
-
def A332192(n): return 10**(n*2+1)-1-7*10^n
Showing 1-10 of 15 results.
Comments