A332197
a(n) = 10^(2n+1) - 1 - 2*10^n.
Original entry on oeis.org
7, 979, 99799, 9997999, 999979999, 99999799999, 9999997999999, 999999979999999, 99999999799999999, 9999999997999999999, 999999999979999999999, 99999999999799999999999, 9999999999997999999999999, 999999999999979999999999999, 99999999999999799999999999999, 9999999999999997999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only).
Cf.
A332117 ..
A332187 (variants with different repeated digit 1, ..., 9).
-
A332197 := n -> 10^(n*2+1)-1-2*10^n;
-
Array[ 10^(2 # + 1) -1 -2*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,9],{7},PadRight[{},n,9]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{7,979,99799},20] (* Harvey P. Dale, Mar 03 2023 *)
-
apply( {A332197(n)=10^(n*2+1)-1-2*10^n}, [0..15])
-
def A332197(n): return 10**(n*2+1)-1-2*10^n
A332116
a(n) = (10^(2n+1)-1)/9 + 5*10^n.
Original entry on oeis.org
6, 161, 11611, 1116111, 111161111, 11111611111, 1111116111111, 111111161111111, 11111111611111111, 1111111116111111111, 111111111161111111111, 11111111111611111111111, 1111111111116111111111111, 111111111111161111111111111, 11111111111111611111111111111, 1111111111111116111111111111111
Offset: 0
- Patrick De Geest, Palindromic Wing Primes: (1)6(1), updated: June 25, 2017.
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Makoto Kamada, Factorization of 11...11611...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332126 ..
A332196 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332116 := n -> (10^(2*n+1)-1)/9+5*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
-
apply( {A332116(n)=10^(n*2+1)\9+5*10^n}, [0..15])
-
def A332116(n): return 10**(n*2+1)//9+5*10**n
A332126
a(n) = 2*(10^(2n+1)-1)/9 + 4*10^n.
Original entry on oeis.org
6, 262, 22622, 2226222, 222262222, 22222622222, 2222226222222, 222222262222222, 22222222622222222, 2222222226222222222, 222222222262222222222, 22222222222622222222222, 2222222222226222222222222, 222222222222262222222222222, 22222222222222622222222222222, 2222222222222226222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332116 ..
A332196 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332126 := n -> 2*(10^(2*n+1)-1)/9+4*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,2],{6},PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{6,262,22622},20] (* Harvey P. Dale, Oct 17 2021 *)
-
apply( {A332126(n)=10^(n*2+1)\9*2+4*10^n}, [0..15])
-
def A332126(n): return 10**(n*2+1)//9*2+4*10**n
A332136
a(n) = 3*(10^(2n+1)-1)/9 + 3*10^n.
Original entry on oeis.org
6, 363, 33633, 3336333, 333363333, 33333633333, 3333336333333, 333333363333333, 33333333633333333, 3333333336333333333, 333333333363333333333, 33333333333633333333333, 3333333333336333333333333, 333333333333363333333333333, 33333333333333633333333333333, 3333333333333336333333333333333
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332126 ..
A332196 (variants with different repeated digit 2, ..., 9).
Cf.
A332130 ..
A332139 (variants with different middle digit 0, ..., 9).
-
A332136 := n -> (10^(2*n+1)-1)/3+3*10^n);
-
Array[ (10^(2 # + 1)-1)/3 + 3*10^# &, 15, 0]
-
apply( {A332136(n)=10^(n*2+1)\3+3*10^n}, [0..15])
-
def A332136(n): return 10**(n*2+1)//3+3*10**n
A332146
a(n) = 4*(10^(2*n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
6, 464, 44644, 4446444, 444464444, 44444644444, 4444446444444, 444444464444444, 44444444644444444, 4444444446444444444, 444444444464444444444, 44444444444644444444444, 4444444444446444444444444, 444444444444464444444444444, 44444444444444644444444444444, 4444444444444446444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332116 ..
A332196 (variants with different repeated digit 2, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332146 := n -> 4*(10^(2*n+1)-1)/9+2*10^n;
-
Array[4 (10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
-
apply( {A332146(n)=10^(n*2+1)\9*4+2*10^n}, [0..15])
-
def A332146(n): return 10**(n*2+1)//9*4+2*10**n
A332156
a(n) = 5*(10^(2*n+1)-1)/9 + 10^n.
Original entry on oeis.org
6, 565, 55655, 5556555, 555565555, 55555655555, 5555556555555, 555555565555555, 55555555655555555, 5555555556555555555, 555555555565555555555, 55555555555655555555555, 5555555555556555555555555, 555555555555565555555555555, 55555555555555655555555555555, 5555555555555556555555555555555
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332116 ..
A332196 (variants with different repeated digit 1, ..., 9).
Cf.
A332150 ..
A332159 (variants with different middle digit 0, ..., 9).
-
A332156 := n -> 5*(10^(2*n+1)-1)/9+10^n;
-
Array[5 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332156(n)=10^(n*2+1)\9*5+10^n}, [0..15])
-
def A332156(n): return 10**(n*2+1)//9*5+10**n
Showing 1-6 of 6 results.
Comments