A332196
a(n) = 10^(2n+1) - 1 - 3*10^n.
Original entry on oeis.org
6, 969, 99699, 9996999, 999969999, 99999699999, 9999996999999, 999999969999999, 99999999699999999, 9999999996999999999, 999999999969999999999, 99999999999699999999999, 9999999999996999999999999, 999999999999969999999999999, 99999999999999699999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332116 ..
A332186 (variants with different repeated digit 1, ..., 8).
-
A332196 := n -> 10^(n*2+1)-1-3*10^n;
-
Array[ 10^(2 # + 1) - 1 - 3*10^# &, 15, 0]
FromDigits/@Table[Join[PadLeft[{6},n,9],PadRight[{},n-1,9]],{n,30}] (* or *) LinearRecurrence[{111,-1110,1000},{6,969,99699},30] (* Harvey P. Dale, May 03 2021 *)
-
apply( {A332196(n)=10^(n*2+1)-1-3*10^n}, [0..15])
-
def A332196(n): return 10**(n*2+1)-1-3*10^n
A332126
a(n) = 2*(10^(2n+1)-1)/9 + 4*10^n.
Original entry on oeis.org
6, 262, 22622, 2226222, 222262222, 22222622222, 2222226222222, 222222262222222, 22222222622222222, 2222222226222222222, 222222222262222222222, 22222222222622222222222, 2222222222226222222222222, 222222222222262222222222222, 22222222222222622222222222222, 2222222222222226222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332116 ..
A332196 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332126 := n -> 2*(10^(2*n+1)-1)/9+4*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,2],{6},PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{6,262,22622},20] (* Harvey P. Dale, Oct 17 2021 *)
-
apply( {A332126(n)=10^(n*2+1)\9*2+4*10^n}, [0..15])
-
def A332126(n): return 10**(n*2+1)//9*2+4*10**n
A332146
a(n) = 4*(10^(2*n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
6, 464, 44644, 4446444, 444464444, 44444644444, 4444446444444, 444444464444444, 44444444644444444, 4444444446444444444, 444444444464444444444, 44444444444644444444444, 4444444444446444444444444, 444444444444464444444444444, 44444444444444644444444444444, 4444444444444446444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332116 ..
A332196 (variants with different repeated digit 2, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332146 := n -> 4*(10^(2*n+1)-1)/9+2*10^n;
-
Array[4 (10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
-
apply( {A332146(n)=10^(n*2+1)\9*4+2*10^n}, [0..15])
-
def A332146(n): return 10**(n*2+1)//9*4+2*10**n
A332156
a(n) = 5*(10^(2*n+1)-1)/9 + 10^n.
Original entry on oeis.org
6, 565, 55655, 5556555, 555565555, 55555655555, 5555556555555, 555555565555555, 55555555655555555, 5555555556555555555, 555555555565555555555, 55555555555655555555555, 5555555555556555555555555, 555555555555565555555555555, 55555555555555655555555555555, 5555555555555556555555555555555
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332116 ..
A332196 (variants with different repeated digit 1, ..., 9).
Cf.
A332150 ..
A332159 (variants with different middle digit 0, ..., 9).
-
A332156 := n -> 5*(10^(2*n+1)-1)/9+10^n;
-
Array[5 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332156(n)=10^(n*2+1)\9*5+10^n}, [0..15])
-
def A332156(n): return 10**(n*2+1)//9*5+10**n
Showing 1-4 of 4 results.