A332194
a(n) = 10^(2n+1) - 1 - 5*10^n.
Original entry on oeis.org
4, 949, 99499, 9994999, 999949999, 99999499999, 9999994999999, 999999949999999, 99999999499999999, 9999999994999999999, 999999999949999999999, 99999999999499999999999, 9999999999994999999999999, 999999999999949999999999999, 99999999999999499999999999999, 9999999999999994999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332114 ..
A332184 (variants with different repeated digit 1, ..., 8).
-
A332194 := n -> 10^(n*2+1)-1-5*10^n;
-
Array[ 10^(2 # + 1) -1 -5*10^# &, 15, 0]
-
apply( {A332194(n)=10^(n*2+1)-1-5*10^n}, [0..15])
-
def A332194(n): return 10**(n*2+1)-1-5*10^n
A332124
a(n) = 2*(10^(2n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
4, 242, 22422, 2224222, 222242222, 22222422222, 2222224222222, 222222242222222, 22222222422222222, 2222222224222222222, 222222222242222222222, 22222222222422222222222, 2222222222224222222222222, 222222222222242222222222222, 22222222222222422222222222222, 2222222222222224222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332114 ..
A332194 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332124 := n -> 2*((10^(2*n+1)-1)/9+10^n);
-
Array[2 ((10^(2 # + 1)-1)/9 + 10^#) &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,2],{4},PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{4,242,22422},20](* Harvey P. Dale, Mar 06 2023 *)
-
apply( {A332124(n)=(10^(n*2+1)\9+10^n)*2}, [0..15])
-
def A332124(n): return (10**(n*2+1)//9+10**n)*2
A332128
a(n) = 2*(10^(2n+1)-1)/9 + 6*10^n.
Original entry on oeis.org
8, 282, 22822, 2228222, 222282222, 22222822222, 2222228222222, 222222282222222, 22222222822222222, 2222222228222222222, 222222222282222222222, 22222222222822222222222, 2222222222228222222222222, 222222222222282222222222222, 22222222222222822222222222222, 2222222222222228222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332128 := n -> 2*(10^(2*n+1)-1)/9+6*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 6*10^# &, 15, 0]
-
apply( {A332128(n)=10^(n*2+1)\9*2+6*10^n}, [0..15])
-
def A332128(n): return 10**(n*2+1)//9*2+6*10**n
A332154
a(n) = 5*(10^(2*n+1)-1)/9 - 10^n.
Original entry on oeis.org
4, 545, 55455, 5554555, 555545555, 55555455555, 5555554555555, 555555545555555, 55555555455555555, 5555555554555555555, 555555555545555555555, 55555555555455555555555, 5555555555554555555555555, 555555555555545555555555555, 55555555555555455555555555555, 5555555555555554555555555555555
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332114 ..
A332194 (variants with different repeated digit 1, ..., 9).
Cf.
A332150 ..
A332159 (variants with different middle digit 0, ..., 9).
-
A332154 := n -> 5*(10^(2*n+1)-1)/9-10^n;
-
Array[5 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{4,545,55455},20] (* or *) Table[FromDigits[Join[PadRight[{},n,5],{4},PadRight[{},n,5]]],{n,0,20}] (* Harvey P. Dale, Mar 09 2025 *)
-
apply( {A332154(n)=10^(n*2+1)\9*5-10^n}, [0..15])
-
def A332154(n): return 10**(n*2+1)//9*5-10**n
A332164
a(n) = 6*(10^(2*n+1)-1)/9 - 2*10^n.
Original entry on oeis.org
4, 646, 66466, 6664666, 666646666, 66666466666, 6666664666666, 666666646666666, 66666666466666666, 6666666664666666666, 666666666646666666666, 66666666666466666666666, 6666666666664666666666666, 666666666666646666666666666, 66666666666666466666666666666, 6666666666666664666666666666666
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332114 ..
A332194 (variants with different repeated digit 1, ..., 9).
Cf.
A332160 ..
A332169 (variants with different middle digit 0, ..., 9).
-
A332164 := n -> 6*(10^(2*n+1)-1)/9-2*10^n;
-
Array[6 (10^(2 # + 1)-1)/9 - 2*10^# &, 15, 0]
-
apply( {A332164(n)=10^(n*2+1)\9*6-2*10^n}, [0..15])
-
def A332164(n): return 10**(n*2+1)//9*6-2*10**n
Showing 1-5 of 5 results.
Comments