cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107123 Numbers k such that (10^(2*k+1)+18*10^k-1)/9 is prime.

Original entry on oeis.org

0, 1, 2, 19, 97, 9818
Offset: 1

Views

Author

Farideh Firoozbakht, May 19 2005

Keywords

Comments

A number k is in the sequence iff the palindromic number 1(k).3.1(k) is prime (1(k) means k copies of 1; dot between numbers means concatenation). If k is a positive term of the sequence then k is not of the form 3m, 6m+4, 12m+10, 28m+5, 28m+8, etc. (the proof is easy).
The palindromic number 1(k).2.1(k) is never prime for k > 0 because it is (1.0(k-1).1)*(1(k+1)). - Robert Israel, Jun 11 2015
a(7) > 10^5. - Robert Price, Apr 02 2016

Examples

			19 is in the sequence because the palindromic number (10^(2*19+1)+18*10^19-1)/9 = 1(19).3.1(19) = 111111111111111111131111111111111111111 is prime.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Maple
    select(n -> isprime((10^(2*n+1)+18*10^n-1)/9), [$0..100]); # Robert Israel, Jun 11 2015
  • Mathematica
    Do[If[PrimeQ[(10^(2n + 1) + 18*10^n - 1)/9], Print[n]], {n, 2500}]
  • PARI
    for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+18*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = (A077779(n-1)-1)/2, for n > 1. [Corrected by M. F. Hasler, Feb 06 2020]

Extensions

Edited by Ray Chandler, Dec 28 2010

A332113 a(n) = (10^(2n+1)-1)/9 + 2*10^n.

Original entry on oeis.org

3, 131, 11311, 1113111, 111131111, 11111311111, 1111113111111, 111111131111111, 11111111311111111, 1111111113111111111, 111111111131111111111, 11111111111311111111111, 1111111111113111111111111, 111111111111131111111111111, 11111111111111311111111111111, 1111111111111113111111111111111
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A107123 = {0, 1, 2, 19, 97, 9818, ...} for the indices of primes.

Crossrefs

Cf. (A077779-1)/2 = A107123: indices of primes; A331864 & A331865 (non-palindromic variants).
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332123 .. A332193 (variants with different repeated digit 2, ..., 9).
Cf. A332112 .. A332119 (variants with different middle digit 2, ..., 9).

Programs

  • Maple
    A332113 := n -> (10^(2*n+1)-1)/9+2*10^n;
  • Mathematica
    Array[(10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
  • PARI
    apply( {A332113(n)=10^(n*2+1)\9+2*10^n}, [0..15])
    
  • Python
    def A332113(n): return 10**(n*2+1)//9+2*10**n

Formula

a(n) = A138148(n) + 3*10^n = A002275(2n+1) + 2*10^n.
G.f.: (3 - 202*x + 100*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A331865 Numbers n for which R(n) + 2*10^floor(n/2) is prime, where R(n) = (10^n-1)/9.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 12, 20, 39, 74, 78, 80, 84, 104, 195, 654, 980, 2076, 5940, 19637
Offset: 1

Views

Author

M. F. Hasler, Jan 30 2020

Keywords

Comments

The corresponding primes are a subsequence of A105992: near-repunit primes.
In base 10, R(n) + 2*10^floor(n/2) has ceiling(n/2)-1 digits 1, one digit 3, and again floor(n/2) digits 1 (except for n=0). For odd n, this is a palindrome (a.k.a. wing prime, cf. A077779), for even n the digit 3 is just left to the middle of the number.
a(22) > 50000. - Michael S. Branicky, Feb 19 2025

Examples

			For n = 0, R(0) + 2*10^floor(0/2) = 2 is prime.
For n = 1, R(1) + 2*10^floor(1/2) = 3 is prime.
For n = 2, R(2) + 2*10^floor(2/2) = 31 is prime.
For n = 3, R(3) + 2*10^floor(3/2) = 131 is prime.
For n = 5, R(5) + 2*10^floor(5/2) = 11311 is prime.
For n = 6, R(6) + 2*10^floor(6/2) = 113111 is prime.
		

Crossrefs

Cf. A105992 (near-repunit primes), A002275 (repunits), A004023 (indices of prime repunits), A011557 (powers of 10).
Cf. A331860 & A331863 (variants with digit 2 resp. 0 instead of 3), A331864 (variant with floor(n/2-1) instead of floor(n/2)).
Cf. A077779 (odd terms).

Programs

  • Mathematica
    Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 2*10^Floor[#/2]] &] (* Michael De Vlieger, Jan 31 2020 *)
  • PARI
    for(n=0,9999,isprime(p=10^n\9+2*10^(n\2))&&print1(n","))

Extensions

a(18)-a(20) from Giovanni Resta, Jan 30 2020
a(21) from Michael S. Branicky, Feb 19 2025
Showing 1-3 of 3 results.