A107123
Numbers k such that (10^(2*k+1)+18*10^k-1)/9 is prime.
Original entry on oeis.org
0, 1, 2, 19, 97, 9818
Offset: 1
19 is in the sequence because the palindromic number (10^(2*19+1)+18*10^19-1)/9 = 1(19).3.1(19) = 111111111111111111131111111111111111111 is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
select(n -> isprime((10^(2*n+1)+18*10^n-1)/9), [$0..100]); # Robert Israel, Jun 11 2015
-
Do[If[PrimeQ[(10^(2n + 1) + 18*10^n - 1)/9], Print[n]], {n, 2500}]
-
for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+18*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
A332113
a(n) = (10^(2n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
3, 131, 11311, 1113111, 111131111, 11111311111, 1111113111111, 111111131111111, 11111111311111111, 1111111113111111111, 111111111131111111111, 11111111111311111111111, 1111111111113111111111111, 111111111111131111111111111, 11111111111111311111111111111, 1111111111111113111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)3(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11311...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332123 ..
A332193 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332113 := n -> (10^(2*n+1)-1)/9+2*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
-
apply( {A332113(n)=10^(n*2+1)\9+2*10^n}, [0..15])
-
def A332113(n): return 10**(n*2+1)//9+2*10**n
A331865
Numbers n for which R(n) + 2*10^floor(n/2) is prime, where R(n) = (10^n-1)/9.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 12, 20, 39, 74, 78, 80, 84, 104, 195, 654, 980, 2076, 5940, 19637
Offset: 1
For n = 0, R(0) + 2*10^floor(0/2) = 2 is prime.
For n = 1, R(1) + 2*10^floor(1/2) = 3 is prime.
For n = 2, R(2) + 2*10^floor(2/2) = 31 is prime.
For n = 3, R(3) + 2*10^floor(3/2) = 131 is prime.
For n = 5, R(5) + 2*10^floor(5/2) = 11311 is prime.
For n = 6, R(6) + 2*10^floor(6/2) = 113111 is prime.
Cf.
A331860 &
A331863 (variants with digit 2 resp. 0 instead of 3),
A331864 (variant with floor(n/2-1) instead of floor(n/2)).
-
Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 2*10^Floor[#/2]] &] (* Michael De Vlieger, Jan 31 2020 *)
-
for(n=0,9999,isprime(p=10^n\9+2*10^(n\2))&&print1(n","))
Showing 1-3 of 3 results.
Comments