A332190 a(n) = 10^(2n+1) - 1 - 9*10^n.
0, 909, 99099, 9990999, 999909999, 99999099999, 9999990999999, 999999909999999, 99999999099999999, 9999999990999999999, 999999999909999999999, 99999999999099999999999, 9999999999990999999999999, 999999999999909999999999999, 99999999999999099999999999999, 9999999999999990999999999999999
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Maple
A332190 := n -> 10^(2*n+1)-1-9*10^n;
-
Mathematica
Array[10^(2 # + 1)-1-9*10^# &, 15, 0] LinearRecurrence[{111,-1110,1000},{0,909,99099},20] (* Harvey P. Dale, May 28 2021 *)
-
PARI
apply( {A332190(n)=10^(n*2+1)-1-9*10^n}, [0..15])
-
Python
def A332190(n): return 10**(n*2+1)-1-9*10^n