A332192 a(n) = 10^(2n+1) - 1 - 7*10^n.
2, 929, 99299, 9992999, 999929999, 99999299999, 9999992999999, 999999929999999, 99999999299999999, 9999999992999999999, 999999999929999999999, 99999999999299999999999, 9999999999992999999999999, 999999999999929999999999999, 99999999999999299999999999999, 9999999999999992999999999999999
Offset: 0
Links
- Patrick De Geest, Palindromic Wing Primes: (9)2(9), updated: June 25, 2017.
- Makoto Kamada, Factorization of 99...99299...99, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Maple
A332192 := n -> 10^(n*2+1)-1-7*10^n;
-
Mathematica
Array[ 10^(2 # +1) -1 -7*10^# &, 15, 0] LinearRecurrence[{111,-1110,1000},{2,929,99299},20] (* Harvey P. Dale, Nov 07 2022 *)
-
PARI
apply( {A332192(n)=10^(n*2+1)-1-7*10^n}, [0..15])
-
Python
def A332192(n): return 10**(n*2+1)-1-7*10^n
Comments