cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332193 a(n) = 10^(2n+1) - 1 - 6*10^n.

Original entry on oeis.org

3, 939, 99399, 9993999, 999939999, 99999399999, 9999993999999, 999999939999999, 99999999399999999, 9999999993999999999, 999999999939999999999, 99999999999399999999999, 9999999999993999999999999, 999999999999939999999999999, 99999999999999399999999999999, 9999999999999993999999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332113 .. A332183 (variants with different repeated digit 1, ..., 8).
Cf. A332190 .. A332197, A181965 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332193 := n -> 10^(n*2+1)-1-6*10^n;
  • Mathematica
    Array[ 10^(2 # + 1) - 1 - 6*10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{3,939,99399},20] (* Harvey P. Dale, Jan 19 2024 *)
  • PARI
    apply( {A332193(n)=10^(n*2+1)-1-6*10^n}, [0..15])
    
  • Python
    def A332193(n): return 10**(n*2+1)-1-6*10^n

Formula

a(n) = 9*A138148(n) + 3*10^n = A002283(2n+1) - 6*10^n.
G.f.: (3 + 606*x - 1500*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.